Joseph L. Awange
Béla Palancz
Robert H. Lewis
Lajos Volgyesi

== @ Mathematical
Geosciences

Hybrid Symbolic-Numeric Methods

=
j=¥]
—
—x
T
=
o
—
™
B
(=n]

Sa)U9IDS09

Earth Sciences

ISBN 978-3-319-67370-7

vll?ss

3190673707

@ Springer

» springer.com

Mathematical Geosciences

Joseph L. Awange - B¢la Palancz
Robert H. Lewis - Lajos Volgyesi

Mathematical Geosciences
Hybrid Symbolic-Numeric Methods

@ Springer

Joseph L. Awange
Spatial Sciences

Robert H. Lewis
Fordham University

Curtin University New York, NY
Perth, WA USA
Australia

Lajos Volgyesi

Béla Palancz Budapest University of Technology and

Budapest University of Technology and Economics

Economics Budapest
Budapest Hungary
Hungary

ISBN 978-3-319-67370-7 ISBN 978-3-319-67371-4 (eBook)
https://doi.org/10.1007/978-3-319-67371-4

Library of Congress Control Number: 2017953801

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Hybrid symbolic-numeric computation (HSNC, for short) is a large and growing
area at the boundary of mathematics and computer science, devoted to the study and
implementation of methods that mix symbolic with numeric computation.

As the title suggests, this is a book about some of the methods and algorithms
that benefit from a mix of symbolic and numeric computation. Three major areas of
computation are covered herein. The first part discusses methods for computing all
solutions to a system of polynomials. Purely symbolic methods, e.g., via Grobner
bases tend to suffer from algorithmic inefficiencies, and purely numeric methods
such as Newton iterations have trouble finding all solutions to such systems. One
class of hybrid methods blends numerics into the purely algebraic approach, e.g.,
computing numeric Grobner bases or Dixon resultants (the latter being extremely
efficient, e.g., for elimination of variables). Another mixes symbolic methods into
more numerical approaches, e.g., finding initializations for numeric homotopy
tracking to obtain all solutions.

The second part goes into the realm of “soft” optimization methods, including
genetic methods, simulated annealing, and particle swarm optimization, among
others. These are all popular and heavily used, especially in the context of global
optimization. While often considered as “numeric” methods, they benefit from
symbolic computation in several ways. One is that implementation is typically
straightforward when one has access to a language that supports symbolic com-
putation. Updates of state, e.g., to handle mutations and gene crossover, are easily
coded. (Indeed, this sort of thing can be so deceptively simple. baked into the
language so to speak, that one hardly realizes symbolic computation is happening.)
Among many applications in this part there is, again, that of solving systems of
equations. Also covered is mixed-integer programming (wherein some variables are
discrete-valued and others continuous). This is a natural area for HSNC since it
combines aspects of exact and numeric methods in the handling of both discrete and
continuous variables.

The third part delves into data modeling. This begins with use of radial basis
functions and proceeds to machine learning, e.g., via support vector machine
(SVM) methods. Symbolic regression, a methodology that combines numerics with

vi Foreword

evolutionary programming, is also introduced for the purpose of modeling data.
Another area seeing recent interest is that of robust optimization and regression,
wherein one seeks results that remain relatively stable with respect to perturbations
in input or random parameters used in the optimization. Several hybrid methods are
presented to address problems in this realm. Stochastic modeling is also discussed.
This is yet another area in which hybrid methods are quite useful.

Symbolic computing languages have seen a recent trend toward ever more high
level support for various mathematical abstractions. This appears for example in
exact symbolic programming involving probability, geometry, tensors, engineering
simulation, and many other areas. Under the hood is a considerable amount of
HSNC (I write this as one who has been immersed at the R&D end of hybrid
computation for two decades.) Naturally, such support makes it all the easier for
one to extend hybrid methods; just consider how much less must be built from
scratch to support, say, stochastic equation solving, when the language already
supports symbolic probability and statistics computations. This book presents to the
reader some of the major areas and methods that are being changed, by the authors
and others, in furthering this interplay of symbolic and numeric computation. The
term hybrid symbolic-numeric computation has been with us for over two decades
now. I anticipate the day when it falls into disuse, not because the technology goes
out of style, but rather that it is just an integral part of the plumbing of mathematical
computation.

Urbana—Champaign Daniel Lichtblau
IL, USA Ph.D., Mathematics UIUC 1991
July 2017 Algebra, Applied Mathematics

Wolfram Research, Champaign

Preface

It will surprise no one to hear that digital computers have been used for numerical
computations ever since their invention during World War II. Indeed, until around
1990, it was not widely understood that computers could do anything else. For
many years, when students of mathematics, engineering, and the sciences used a
computer, they wrote a program (typically in Fortran) to implement mathematical
algorithms for solving equations in one variable, or systems of linear equations, or
differential equations. The input was in so-called “float” numbers with 8-12
significant figures of accuracy. The output was the same type of data, and the
program worked entirely with the same type of data. This is numerical computing.

By roughly 1990, computer algebra software had become available. Now it was
possible to enter data like x*>+3x+2 and receive output like (x+2)(x+1).
The computer is doing algebra! More precisely, it is doing symbolic computing.
The program that accomplishes such computing almost certainly uses no float
numbers at all.

What is still not widely understood is that often it is productive to have algo-
rithms that do both kinds of computation. We call these hybrid symbolic-numeric
methods. Actually, such methods have been considered by some mathematicians
and computer scientists since at least 1995 (ISSAC 1995 conference). In this book,
the authors provide a much-needed introduction and reference for applied mathe-
maticians, geoscientists, and other users of sophisticated mathematical software.

No mathematics beyond the undergraduate level is needed to read this book, nor
does the reader need any pure mathematics background beyond a first course in
linear algebra. All methods discussed here are illustrated with copious examples.

A brief list of topics covered:

Systems of polynomial equations with resultants and Grobner bases
Simulated annealing

Genetic algorithms

Particle swarm optimization

Integer programming

Approximation with radial basis functions

vii

viii Preface

Support vector machines
Symbolic regression
Quantile regression
Robust regression
Stochastic modeling
Parallel computations

Most of the methods discussed in the book will probably be implemented by the
reader on a computer algebra system (CAS). The two most fully developed and
widely used CAS are Mathematica and Maple. Some of the polynomial compu-
tations here are better done on the specialized system Fermat. Other systems worthy
of mention are Singular and SageMath.

The second author is a regular user of Mathematica, who carried out the com-
putations, therefore frequent mention is made of Mathematica commands.
However, this book is not a reference manual for any system, and we have made an
effort to keep the specialized commands to a minimum, and to use commands
whose syntax makes them as self-explanatory as possible. More complete
Mathematica programs to implement some of the examples are available online.
Similarly, a program written in Fermat for the resultant method called Dixon-EDF
is available online.

The authors:

July 2017

Béla Palancz
Budapest, Hungary

Joseph L. Awange
Perth, Australia

Lajos Volgyesi
Robert H. Lewis Budapest, Hungary
New York, USA

Acknowledgements

The authors wish to express their sincere thanks to Dr. Daniel Lichtblau for his
helpful comments and for agreeing to write a foreword for our book. R. Lewis and
B. Palancz highly appreciate and thank Prof. Jon Kirby the Head of the Department
of Spatial Sciences, Curtin University, Australia for his hospitality and his support
of their visiting Curtin. B. Paldncz wishes also thank the TIGeR Foundation for the
partial support of his staying in Perth. This work was funded partially by OTKA
project No. 124286.

ix

Contents

Part I Solution of Nonlinear Systems

1

Solution of Algebraic Polynomial Systems. 3
1.1 Zeros of Polynomial Systems 3
1.2 Resultant Methods 4
1.2.1 Sylvester Resultant 4
1.2.2 Dixon Resultant. 5
1.3 Grobner Basis. 7
1.3.1 Greatest Common Divisor of Polynomials. 8
1.3.2 Reduced Grobner Basis. 11
1.3.3 Polynomials with Inexact Coefficients. 12
1.4 Using Dixon-EDF for Symbolic Solution of Polynomial
SYSIEIMS . . oot 14
1.4.1 Explanation of Dixon-EDF 14
1.4.2 Distance from a Point to a Standard Ellipsoid. 16
143 Distance from a Point to Any 3D Conic........... 16
1.4.4 Pose Estimation. 17
1.4.5 How to Run Dixon-EDF 18
1.5 Applications 18
1.5.1 Common Points of Geometrical Objects 18
1.5.2 Nonlinear Heat Transfer 22
1.5.3 Helmert Transformation. 25
1.6 EXEICISES. . . oottt 28
1.6.1 Solving a System with Different Techniques. 28
1.6.2 Planar Ranging 31
1.6.3 3D Resection.t 32
1.6.4 Pose Estimation. 34
References. 39

xi

xii

Contents

Homotopy Solution of Nonlinear Systems 41
2.1 The Concept of Homotopy 41
2.2 Solving Nonlinear Equation via Homotopy 43
2.3 Tracing Homotopy Path as Initial Value Problem. 45
24 Types of Linear Homotopy. 47
2.4.1 General Linear Homotopy 47
242 Fixed-Point Homotopy 47
243 Newton Homotopy 48
244 Affine Homotopy. 48
2.4.5 Mixed Homotopy 48
2.5 Regularization of the Homotopy Function 49
2.6 Start System in Case of Algebraic Polynomial Systems 49
2.7 Homotopy Methods in Mathematica. 51
2.8 Parallel Computation 55
2.9 General Nonlinear System 56
2.10 Nonlinear Homotopy 58
2.10.1 Quadratic Bezier Homotopy Function 58
2.10.2 Implementation in Mathematica. 61
2.10.3 Comparing Linear and Quadratic Homotopy 62
2.11 Applications 65
2.11.1 Nonlinear Heat Conduction. 65
2.11.2 Local Coordinates via GNSS. 68
2,12 BXEICISES. . oot ot ettt 71
2.12.1 GNSS Positioning N-Point Problem 71
References. 76
Overdetermined and Underdetermined Systems. 77
3.1 Concept of the Over and Underdetermined Systems. 77
3.1.1 Overdetermined Systems 77
3.1.2 Underdetermined Systems 79
3.2 Gauss—Jacobi Combinatorial Solution. 80
3.3 Gauss—Jacobi Solution in Case of Nonlinear Systems. 84
3.4 Transforming Overdetermined System into a Determined
SYSEM . . e 89
3.5 Extended Newton—Raphson Method. 90
3.6 Solution of Underdetermined Systems 92
3.6.1 Direct Minimization. 93
3.6.2 Method of Lagrange Multipliers 93
3.6.3 Method of Penalty Function 95
3.64 Extended Newton—Raphson. 95
37 Applications 96

3.7.1 Geodetic Application—The Minimum Distance
Problem........ 96

Contents

3.7.2 Global Navigation Satellite System (GNSS)

Application

373 Geometric Application.

3.8 EXEICISES.ttt
3.8.1 Solution of Overdetermined System

3.8.2 Solution of Underdetermined System

Part I Optimization of Systems

4

Simulated Annealing.
4.1 Metropolis Algorithm
4.2 Realization of the Metropolis Algorithm.
4.2.1 Representation of a State.
422 The Free Energy of aState
423 Perturbation of a State.,
424 Accepting a New State
425 Implementation of the Algorithm.
4.3 Algorithm of the Simulated Annealing....................
44 Implementation of the Algorithm
4.5 Application to Computing Minimum of a Real Function
4.6 Generalization of the Algorithm
47 Applcations
4.7.1 A Packing Problem
4.7.2 The Traveling Salesman Problem
4.8 EXEICISEt
Genetic Algorithms
5.1 The Genetic Evolution Concept
5.2 Mutation of the Best Individual
53 SolvingaPuzzle........
5.4 Application to a Real Function.
5.5 Employing Sexual Reproduction.
5.5.1 Selection of Parents.
5.5.2 Sexual Reproduction: Crossover and Mutation
5.6 The Basic Genetic Algorithm (BGA)
5.7 Applications
5.7.1 Nonlinear Parameter Estimation.
5.7.2 Packing Spheres with Different Sizes

573 Finding All the Real Solutions of a Non-algebraic
SYStem. . .« oo
5.8 EXEICISES. . . .ottt
5.8.1 Foxhole Problem
References.

Xiii

Xiv

Contents
Particle Swarm Optimization 167
6.1 The Concept of Social Behavior of Groups of Animals 167
6.2 Basic Algorithm 168
6.3 The Pseudo Code of the Algorithm 170
6.4 Applications 171
6.4.1 IDExample 172
6.4.2 2D Example 175
6.4.3 Solution of Nonlinear Non-algebraic System. 178
6.5 EXerCise 181
Reference 184
Integer Programming 185
7.1 Integer Problem 185
7.2 Discrete Value Problems. 187
7.3 Simple Logical Conditions 189
7.4 Some Typical Problems of Binary Programming 191
7.4.1 Knapsack Problem. 191
7.4.2 Nonlinear Knapsack Problem 192
7.4.3 Set-Covering Problem 192
7.5 Solution Methods 194
7.5.1 Binary Countdown Method 194
7.5.2 Branch and Bound Method 196
7.6 Mixed—Integer Programming 200
7.7 Applications 200
7.7.1 Integer Least Squares 200
7.7.2 Optimal Number of Oil Wells. 202
7.8 EXEICISES.ottt 203
7.8.1 Study of Mixed Integer Programming 203
7.8.2 Mixed Integer Least Square. 205
References. 206
Multiobjective Optimization 207
8.1 Concept of Multiobjective Problem 207
8.1.1 Problem Definition 207
8.1.2 Interpretation of the Solution. 208
82 Pareto Optimumot 209
8.2.1 Nonlinear Problems. 210
8.2.2 Pareto-Front and Pareto-Set. 211
8.3 Computation of Pareto Optimum 212
8.3.1 Pareto Filter. 212

8.3.2 Reducing the Problem to the Case of a Single
ObjJectiVveo oot 214
833 Weighted Objective Functions. 219

8.34 Ideal Point in the Function Space 220

Contents XV

8.3.5 Pareto Balanced Optimum. 220
8.3.6 Non-convex Pareto-Front. 222
8.4 Employing Genetic Algorithms. 223
8.5 Application. 229
8.5.1 Nonlinear Gauss-Helmert Model 229
8.6 EXEICISC 234
References. 241

Part III Approximation of Functions and Data

9

10

Approximation with Radial Bases Functions. 245
9.1 Basic Idea of RBF Interpolation. 245
9.2 Positive Definite RBF Function 249
9.3 Compactly Supported Functions 251
9.4 Some Positive Definite RBF Function 253
9.4.1 Laguerre-Gauss Function. 253
942 Generalized Multi-quadratic RBF 254
9423 Wendland Function. 256
94.4 Buchmann-Type RBF 257
9.5 Generic Derivatives of RBF Functions. 257
9.6 Least Squares Approximation with RBF. 260
9.7 Applications 264
9.7.1 Image Compression. 264

9.7.2 RBF Collocation Solution of Partial Differential
Equation 269
0.8 EXErCiSet 276
9.8.1 Nonlinear Heat Transfer 276
References. 278
Support Vector Machines (SVM). 279
10.1 Concept of Machine Learning. 279
10.2 Optimal Hyperplane Classifier 280
10.2.1 Linear Separability. 280
10.2.2 Computation of the Optimal Parameters 283
10.2.3 Dual Optimization Problem. 284
10.3 Nonlinear Separability 286
10.4 Feature Spaces and Kernels 288
10.5 Application of the Algorithm 289
10.5.1 Computation Step by Step. 289
10.5.2 Implementation of the Algorithm. 292
10.6 Two Nonlinear Test Problems 294
10.6.1 Learning a Chess Board 294
10.6.2 Two Intertwined Spirals 297

10.7 Concept of SVM Regression 299

XVi

11

12

Contents
10.7.1 e-Insensitive Loss Function..................... 299

10.7.2 Concept of the Support Vector Machine Regression
(SVMR). . .. 300
10.7.3 The Algorithm of the SVMR. 302
10.8 Employing Different Kernels 305
10.8.1 Gaussian Kernel 306
10.8.2 Polynomial Kernel. 307
10.8.3 WaveletKernel 308
10.8.4 Universal Fourier Kernel 311
109 Applicationsttt 313
10.9.1 Image Classification. 313
10.9.2 Maximum Flooding Level. 315
10.10 EXerciseottt 318
10.10.1 Noise Filtration 318
References. 320
Symbolic Regression 321
11.1 Concept of Symbolic Regression 321
11.2 Problemof Kepler 325
11.2.1 Polynomial Regression 326
11.2.2 Neural Network. 326
11.2.3 Support Vector Machine Regression 328
1124 RBF Interpolation 329
11.2.5 Random Models 330
11.2.6 Symbolic Regression. 330
11.3 Applicationso 334

11.3.1 Correcting Gravimetric Geoid Using GPS

Ellipsoidal Heights 334
11.3.2 Geometric Transformation. 342
11.4 EXEICISE . . .ottt e e e 349
114.1 Bremerton Data.............. 349
References. 357
Quantile Regression. 359
12.1 Problems with the Ordinary Least Squares................. 359
12.1.1 Correlation Height and Age. 359
12.1.2 Engel’sProblem 359
12.2 Conceptof Quantile 362
12.2.1 Quantile as a Generalization of Median. 362
12.2.2 Quantile for Probability Distributions 366
12.3 Linear Quantile Regression. 368
12.3.1 Ordinary Least Square (OLS) 369
12.3.2 Median Regression (MR) 369

12.3.3 Quantile Regression (QR) 370

Contents

13

14

XVvii
12.4 Computing Quantile Regression 376
12.4.1 Quantile Regression via Linear Programming 376
12.42 Boscovich’s Problem. 377

12.4.3 Extension to Linear Combination of Nonlinear
Functions. L. 380
12.4.4 B-Spline Application. 382
12,5 Applicationst 387
12.5.1 Separate Outliers in Cloud Points 387
12.5.2 Modelling Time-Series 393
12,6 EXEICISE . . . oottt 400
12.6.1 Regression of Implicit-Functions. 400
References. 403
Robust Regression. 405
13.1 Basic Methods in Robust Regression 405
13.1.1 Concept of Robust Regression. 405
13.1.2 Maximum Likelihood Method. 406
13.1.3 Danish Algorithm 422
13.1.4 Danish Algorithm with PCA 426
13.1.5 RANSAC Algorithm 432
13.2 Application Examples. 442
13.2.1 Fitting a Sphere to Point Cloud Data. 442
1322 FittingaCylinder 464
13.3 Problem 502
13.3.1 Fitting a Planetoa Slope 502
References. 513
Stochastic Modeling. 517
14.1 Basic Stochastic Processes 517
14.1.1 Concept of Stochastic Processes 517
14.1.2 Examples for Stochastic Processes. 517
14.1.3 Features of Stochastic Processes 519
142 Time Series.v i 521
14.2.1 Concept of Time Series. 521
14.2.2 Models of Time Series 521
14.3 Stochastic Differential Equations (SDE) 528
143.1 TtoProcess......... i 528
14.3.2 TIto Numerical Integral 528
143.3 Euler-Maruyama Method. 529
14.4 Numerical Solution of (SDE) 529
14.4.1 Single Realization 530
14.42 Many Realizations. 531
14.43 Slice Distribution. 531

1444 Standard Error Band 532

XViii

15

Contents

14.5 Parameter Estimation 532

14.5.1 Measurement Values 533

14.5.2 Likelihood Function 533

14.5.3 Maximization of the Likelihood Function 534

14.5.4 Simulation with the Estimated Parameters. 535

14.5.5 Deterministic Versus Stochastic Modeling. 536

14.6 Applications it 537

14.6.1 Rotating Ellipsoid with a Stochastic Flattening 537

14.6.2 Analysis of Changes in Groundwater Radon. 545

147 Problem 549

14.7.1 Deterministic Lorenz Attractor. 549

1472 Stochastic Lorenz Attractor 553

Parallel Computations. 559

15.1 Introduction iiii 559

152 Amdahl’s-Law 560

15.3 Implicit and Explicit Parallelism. 560

15.4 Dispatching Tasks. 562

155 Balancing Loads. 565

15.6 Parallel Computing with GPU 568

15.6.1 Neural Network Computing with GPU 568

15.6.2 Image Processing with GPU 574

157 Applications 577

15.7.1 3D Ranging Using the Dixon Resultant 577

15.7.2 Reducing Colors via Color Approximation 582

158 Problem 586
15.8.1 Photogrammetric Positioning by Gauss-Jacobi

Method 586

Bibliography 595

Introduction

Numeric and Symbolic Methods—What are they?

Basically, a numeric (or numerical) method is one that could be done with a simple
handheld calculator, using basic arithmetic, square roots, some trigonometry
functions, and a few other functions most people learn about in high school.
Depending on the task, one may have to press the calculator buttons thousands (or
even millions) of times, but theoretically, a person with a calculator and some paper
could implement a numerical method. When finished, the paper would be full of
arithmetic.

A symbolic method involves algebra. It is a method that if a person implemented,
would involve algebraic or higher rational thought. A person implementing a
symbolic method will rarely need to reach for a calculator. When finished, there
may be some numbers, but the paper would be full of variables like x, y, z.

Students usually meet the topic of quadratic equations in junior high school.
Suppose you wanted to solve the equation x> 4+ 3x — 2 = 0. With a handheld cal-
culator, one could simply do “intelligent guessing.” Let us guess, say, x =1. Plug it
in, get a positive result. OK, that is too big. Try x = 0; that is too small. Go back and
forth; stop when satisfied with the accuracy. It does not take long to get x =
0.56155, which might well be considered accurate enough. Furthermore, it is easy
to write a computer program to implement this idea. That is a numeric method.

But wait. There is another answer, which the numeric method missed, namely
—3.56155. Even worse, if one were to continue this method on many problems, one
would soon notice that some equations do not seem to have solutions, such as
x? —2x+4 = 0. A great deal of effort could be expended in arithmetic until finally
giving up and finding no solution.

The problem is cured by learning algebra and the symbolic method called the

quadratic formula. Given ax? 4 bx + ¢ = 0 the solution is x = 2=V —dac ‘21;2’4“

immediately obvious why some problems have no solution: it happens precisely
when b? — 4ac < 0.

. It is now

XiX

XX Introduction

In the previous example, x> 4+ 3x — 2 = 0, we see that the two roots are exactly
(=3 4+/17)/2. There is no approximation whatever. Should a decimal answer
correct to, say, 16 digits be desired, that would be trivially obtained on any modern
computer.

There is more. Not only does the symbolic method concisely represent all
solutions, it invites the question, can we define a new kind of number in which the
negative under the square root may be allowed? The symbolic solution has led to a
new concept, that of complex numbers!

Symbolic methods may be hard to develop, and they may be difficult for a
computer to implement, but they lead to insight.

Fortunately, we are not forced into a strict either/or dichotomy. There are
symbolic-numeric methods, hybrids using the strengths of both ideas.

Numeric Solution

In order to further illustrate numeric, symbolic, and symbolic-numeric solutions, let
us consider an algebraic system of polynomial equations. For such systems, there
may be no solution, one solution, or many solutions. With numerical solutions, one
commonly utilizes iterative techniques starting from an initially guessed value. Let
us start with a two variable system of two equations f(x,y) = 0 and g(x,y) =0,

f=@=2+(-3),
e R

This actual problem has two real solutions, see Fig. 1.

6F

(]

_.2. : o .4. =

Fig. 1 Geometrical representation of a multivariate polynomial system

Introduction XXi

Fig. 2 Local solution with initial guess and iteration steps

A numeric solution starts with the initial value and proceeds step-by-step locally.
Depending on the method, we expect to converge to one of the solutions in an
efficient manner. Employing the initial value (4, —1) and a multivariate Newton’s
method, the solution after seven steps is (2.73186, 0.887092). Let us visualize the
iteration steps, see Fig. 2.

However, if the initial guess is not proper, for example (0, 0), then, we may have
a problem with the convergence since the Jacobian may become singular.

Symbolic Solution

Let us transform the original system into another one, which has the same solutions,
but for which variables can be isolated and solved one-by-one. Employing Grobner
basis, we can reduce one of the equations to a univariate polynomial,

gry = 2113 — 3120y + 832y?,

grxy = —65 + 16x +24y.
First, solving the quadratic equation gry, we have

v = (195 — 2v/2639),

v = 14 (195 +2v/2639).

XXii Introduction

Fig. 3 Global solution—all solutions without initial guess and iteration

Then employing these roots of y, the corresponding values of x can be computed
from the second polynomial of the Grobner basis as

x = 4 (130 +3v2639),
x =2 (130 — 3v/2639).

So, we have computed both solutions with neither guessing nor iteration.
In addition, there is no round-off error. Let us visualize the two solutions, see
Fig. 3:

Let us summarize the main features of the symbolic and numeric computations:

Numeric computations:

— usually require initial values and iterations. They are sensitive to round-off
errors, provide only one local solution,

— can be employed for complex problems, and the computation times are short in
general because the steps usually translate directly into computer machine
language.

Symbolic computations:

— do not require initial values and iterations. They are not sensitive for round-off
errors, and provide all solutions,

— often cannot be employed for complex problems, and the computation time is
long in general because the steps usually require computer algebra system
software.

Introduction XXiii

Ideally, the best strategy is to divide the algorithm into symbolic and numeric
parts in order to utilize the advantages of both techniques. Inevitably, numeric
computations will always be used to a certain extent. For example, if polynomial
gry above had been degree, say, five, then a numeric univariate root solver would
have been necessary.

Hybrid (symbolic-numeric) Solution

Sometimes, we can precompute a part of a numerical algorithm in symbolic form.
Here is a simple illustrative example.
Consider a third polynomial and add it to our system above:

h=(x+3+(-)-s

In that case, there is no solution, since there is no common point of the three
curves representing the three equations, see Fig. 4.

However, we can look for a solution of this overdetermined system in the
minimal least squares sense by using the objective function

G=f+g+I,

Fig. 4 Now, there is no solution of the overdetermined system

XXiv Introduction

or
ossstanrscoonys () (219

(e (1))

and minimizing it.
Employing Newton’s method, we get

x=2.28181,y= 0.556578.

The computation time for this was 0.00181778 s. The solution of the overde-
termined system can be seen in Fig. 5.

Here, the gradient vector as well as the Hessian matrix is computed in numerical
form in every iteration step. But we can compute the gradient in symbolic form:

1
grad = (ﬁ (2x(173 + 192(—2 + x)x) + 216xy — 16(41 + 26x)y* +

137829 n 555x n 27x% n 60527y
512 8 8 128

767y B 105y* —|—6y5>

64(1 + 2x)y* 4 3(—809 4 740y)) —

6321y?

2 2 2.2

41xy — 1327y — —— 4+ 6xy° 4+ 6%y + ——
Ixy — 13x 6 Xy X >

Employing this symbolic form the computation time can be reduced. The
running time can be further reduced if the Hessian matrix is also computed
symbolically,

0.0

-05 |

-1.0l . —
1.0 1.5 2.0 25 3.0

Fig. 5 The solution of the overdetermined system

Introduction XXV

555 27
22 4 y(—a1+6y)+x(- 4 29(—13+6
13 4 12n(—d 4+ 3x) + 2 —13y7 4 43 g ¥) (4 N y)>
H= 60527 , 6321y
W741x713x 5

35 4 y(—41+6y) +x(Z +2y(—13+6y)) 30142
+ 123y + 122y + Ty7210y3 1 30y*

Now, the computation time is less than half of the original one.

So using symbolic forms, the computation time can be reduced considerably.
This so-called hybrid computation has an additional advantage too, namely the
symbolic part of the algorithm does not generate round-off errors.

Another approach of applying the hybrid computation is to merge symbolic
evaluation with numeric algorithm. This technique is illustrated using the following
example.

Let us consider a linear, nonautonomous differential equation system of n vari-
ables in matrix form:

d%y(x) = A(x)y(x) + b(x),

where A is a matrix of nxn dimensions, y(x) and b(x) are vectors of n dimen-
sions, and x is a scalar independent variable. In the case of a boundary value
problem, the values of some dependent variables are not known at the beginning
of the integration interval, at x = x,, but they are given at the end of this interval,
at x = xp. The usually employed methods need subsequent integration of the
system, because of their trial-error technique or they require solution of a large
linear equation system, in the case of discretization methods. The technique is
based on the symbolic evaluation of the well-known Runge—Kutta algorithm.
This technique needs only one integration of the differential equation system and
a solution of the linear equation system representing the boundary conditions at
X = Xp.

The well-known fourth-order Runge—Kutta method, in our case, can be repre-
sented by the following formulas:

Rl,‘ = A(xi)y(xi) + b(x,»),
B2, = A+) (0) + 549 + b+).
B3 = A+ 4) (000) + 5 + b+).

R4i = A(Xi —+ h) (y(xi) —+ RS,h) + b(xi —+ h)

and then the new value of y(x) can be computed as:

Vit = y(x) + (Rl,-+2(R2iJ6rR3,-)+R4,-)h.

XXVi Introduction

A symbolic system like Mathematica, is able to carry out this algorithm not
only with numbers but also with symbols. It means that the unknown elements of
Ya = ¥(x,) can be considered as unknown symbols. These symbols will appear in
every evaluated y; value, as well as in y, = y(x;) too.

Let us consider a simple illustrative example. The differential equation is:

(&309) = (1=9r(0) =
The given boundary values are:
y(1) =2

and
y3) = -1

After introducing new variables, we get a first-order system,

and

1200 = S3()

the matrix form of the differential equation is:

310, 020) = [5 o010 2140, 4

Employing Mathematica’s notation:

Alx]1:={{0,1},{1-1/5x%x,0}};
blx_]1:={0,x};

x0=1;

v0={2.,s}

The unknown initial value is s. The order of the system M = 2. Let us consider
the number of the integration steps as N = 10, so the step size is h = 0.2.

yvsol=RKSymbolic[x0,v0,A,b,2,10,0.2];

The result is a list of list data structure containing the corresponding (x, y) pairs,
where the y values depend on s.

ysol[[2]][[1]]

{{1,2.},{1.2,2.05533+0.200987 s},{1.4,2.22611+0.407722
s},

{1.6,2.52165+0.625515 s},

{1.8,2.95394+0.859296s}, {2.,3.53729+1.11368s},

Introduction XXVii

{2.2,4.28801+1.39298 s},
{2.4,5.22402+1.70123 s}, {2.6,6.36438+2.0421 s},
{2.8,7.72874+2.41888 s},{3.,9.33669+2.8343 s}}

Consequently, we have got a symbolic result using traditional numerical Runge—
Kutta algorithm.

In order to compute the proper value of the unknown initial value, s, the
boundary condition can be applied at x = 3. In our case yl1(3) = —1.

eqg=ysol[[1]][[1]]==-1
9.33669+2.8343 s==-1

Let us solve this equation numerically, and assign the solution to the symbol s:

sol=Solveleq, sl
{{s ->-3.647}}
s=s/.sol
{-3.647}
s=s[[1]]
-3.647

Then, we get the numerical solution for the problem:

ysol[[2]]1[[1]]
{{1,2.},{1.2,1.32234},{1.4,0.739147},{1.6,0.240397},
{1.8,-0.179911}, {2.,-0.524285},{2.2,-0.792178},
{2.4,-0.980351},{2.6,-1.08317},{2.8,-1.09291},
{3.,-1.}}

The truncation error can be decreased by using smaller step size h, and the
round-off error can be controlled by the employed number of digits.

	__Cover
	_BookFrontmatter 1..27

