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Foreword

Hybrid symbolic-numeric computation (HSNC, for short) is a large and growing
area at the boundary of mathematics and computer science, devoted to the study and
implementation of methods that mix symbolic with numeric computation.

As the title suggests, this is a book about some of the methods and algorithms
that benefit from a mix of symbolic and numeric computation. Three major areas of
computation are covered herein. The first part discusses methods for computing all
solutions to a system of polynomials. Purely symbolic methods, e.g., via Grobner
bases tend to suffer from algorithmic inefficiencies, and purely numeric methods
such as Newton iterations have trouble finding all solutions to such systems. One
class of hybrid methods blends numerics into the purely algebraic approach, e.g.,
computing numeric Grobner bases or Dixon resultants (the latter being extremely
efficient, e.g., for elimination of variables). Another mixes symbolic methods into
more numerical approaches, e.g., finding initializations for numeric homotopy
tracking to obtain all solutions.

The second part goes into the realm of “soft” optimization methods, including
genetic methods, simulated annealing, and particle swarm optimization, among
others. These are all popular and heavily used, especially in the context of global
optimization. While often considered as “numeric” methods, they benefit from
symbolic computation in several ways. One is that implementation is typically
straightforward when one has access to a language that supports symbolic com-
putation. Updates of state, e.g., to handle mutations and gene crossover, are easily
coded. (Indeed, this sort of thing can be so deceptively simple. baked into the
language so to speak, that one hardly realizes symbolic computation is happening.)
Among many applications in this part there is, again, that of solving systems of
equations. Also covered is mixed-integer programming (wherein some variables are
discrete-valued and others continuous). This is a natural area for HSNC since it
combines aspects of exact and numeric methods in the handling of both discrete and
continuous variables.

The third part delves into data modeling. This begins with use of radial basis
functions and proceeds to machine learning, e.g., via support vector machine
(SVM) methods. Symbolic regression, a methodology that combines numerics with
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evolutionary programming, is also introduced for the purpose of modeling data.
Another area seeing recent interest is that of robust optimization and regression,
wherein one seeks results that remain relatively stable with respect to perturbations
in input or random parameters used in the optimization. Several hybrid methods are
presented to address problems in this realm. Stochastic modeling is also discussed.
This is yet another area in which hybrid methods are quite useful.

Symbolic computing languages have seen a recent trend toward ever more high
level support for various mathematical abstractions. This appears for example in
exact symbolic programming involving probability, geometry, tensors, engineering
simulation, and many other areas. Under the hood is a considerable amount of
HSNC (I write this as one who has been immersed at the R&D end of hybrid
computation for two decades.) Naturally, such support makes it all the easier for
one to extend hybrid methods; just consider how much less must be built from
scratch to support, say, stochastic equation solving, when the language already
supports symbolic probability and statistics computations. This book presents to the
reader some of the major areas and methods that are being changed, by the authors
and others, in furthering this interplay of symbolic and numeric computation. The
term hybrid symbolic-numeric computation has been with us for over two decades
now. I anticipate the day when it falls into disuse, not because the technology goes
out of style, but rather that it is just an integral part of the plumbing of mathematical
computation.

Urbana—Champaign Daniel Lichtblau
IL, USA Ph.D., Mathematics UIUC 1991
July 2017 Algebra, Applied Mathematics

Wolfram Research, Champaign



Preface

It will surprise no one to hear that digital computers have been used for numerical
computations ever since their invention during World War II. Indeed, until around
1990, it was not widely understood that computers could do anything else. For
many years, when students of mathematics, engineering, and the sciences used a
computer, they wrote a program (typically in Fortran) to implement mathematical
algorithms for solving equations in one variable, or systems of linear equations, or
differential equations. The input was in so-called “float” numbers with 8-12
significant figures of accuracy. The output was the same type of data, and the
program worked entirely with the same type of data. This is numerical computing.

By roughly 1990, computer algebra software had become available. Now it was
possible to enter data like x*>+3x+2 and receive output like (x+2)(x+1).
The computer is doing algebra! More precisely, it is doing symbolic computing.
The program that accomplishes such computing almost certainly uses no float
numbers at all.

What is still not widely understood is that often it is productive to have algo-
rithms that do both kinds of computation. We call these hybrid symbolic-numeric
methods. Actually, such methods have been considered by some mathematicians
and computer scientists since at least 1995 (ISSAC 1995 conference). In this book,
the authors provide a much-needed introduction and reference for applied mathe-
maticians, geoscientists, and other users of sophisticated mathematical software.

No mathematics beyond the undergraduate level is needed to read this book, nor
does the reader need any pure mathematics background beyond a first course in
linear algebra. All methods discussed here are illustrated with copious examples.

A brief list of topics covered:

Systems of polynomial equations with resultants and Grobner bases
Simulated annealing

Genetic algorithms

Particle swarm optimization

Integer programming

Approximation with radial basis functions

vii



viii Preface

Support vector machines
Symbolic regression
Quantile regression
Robust regression
Stochastic modeling
Parallel computations

Most of the methods discussed in the book will probably be implemented by the
reader on a computer algebra system (CAS). The two most fully developed and
widely used CAS are Mathematica and Maple. Some of the polynomial compu-
tations here are better done on the specialized system Fermat. Other systems worthy
of mention are Singular and SageMath.

The second author is a regular user of Mathematica, who carried out the com-
putations, therefore frequent mention is made of Mathematica commands.
However, this book is not a reference manual for any system, and we have made an
effort to keep the specialized commands to a minimum, and to use commands
whose syntax makes them as self-explanatory as possible. More complete
Mathematica programs to implement some of the examples are available online.
Similarly, a program written in Fermat for the resultant method called Dixon-EDF
is available online.

The authors:

July 2017

Béla Palancz
Budapest, Hungary

Joseph L. Awange
Perth, Australia

Lajos Volgyesi
Robert H. Lewis Budapest, Hungary
New York, USA
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Introduction

Numeric and Symbolic Methods—What are they?

Basically, a numeric (or numerical) method is one that could be done with a simple
handheld calculator, using basic arithmetic, square roots, some trigonometry
functions, and a few other functions most people learn about in high school.
Depending on the task, one may have to press the calculator buttons thousands (or
even millions) of times, but theoretically, a person with a calculator and some paper
could implement a numerical method. When finished, the paper would be full of
arithmetic.

A symbolic method involves algebra. It is a method that if a person implemented,
would involve algebraic or higher rational thought. A person implementing a
symbolic method will rarely need to reach for a calculator. When finished, there
may be some numbers, but the paper would be full of variables like x, y, z.

Students usually meet the topic of quadratic equations in junior high school.
Suppose you wanted to solve the equation x> 4+ 3x — 2 = 0. With a handheld cal-
culator, one could simply do “intelligent guessing.” Let us guess, say, x =1. Plug it
in, get a positive result. OK, that is too big. Try x = 0; that is too small. Go back and
forth; stop when satisfied with the accuracy. It does not take long to get x =
0.56155, which might well be considered accurate enough. Furthermore, it is easy
to write a computer program to implement this idea. That is a numeric method.

But wait. There is another answer, which the numeric method missed, namely
—3.56155. Even worse, if one were to continue this method on many problems, one
would soon notice that some equations do not seem to have solutions, such as
x? —2x+4 = 0. A great deal of effort could be expended in arithmetic until finally
giving up and finding no solution.

The problem is cured by learning algebra and the symbolic method called the

quadratic formula. Given ax? 4 bx + ¢ = 0 the solution is x = 2=V —dac ‘21;2’4“

immediately obvious why some problems have no solution: it happens precisely
when b? — 4ac < 0.

. It is now

XiX
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In the previous example, x> 4+ 3x — 2 = 0, we see that the two roots are exactly
(=3 4+/17)/2. There is no approximation whatever. Should a decimal answer
correct to, say, 16 digits be desired, that would be trivially obtained on any modern
computer.

There is more. Not only does the symbolic method concisely represent all
solutions, it invites the question, can we define a new kind of number in which the
negative under the square root may be allowed? The symbolic solution has led to a
new concept, that of complex numbers!

Symbolic methods may be hard to develop, and they may be difficult for a
computer to implement, but they lead to insight.

Fortunately, we are not forced into a strict either/or dichotomy. There are
symbolic-numeric methods, hybrids using the strengths of both ideas.

Numeric Solution

In order to further illustrate numeric, symbolic, and symbolic-numeric solutions, let
us consider an algebraic system of polynomial equations. For such systems, there
may be no solution, one solution, or many solutions. With numerical solutions, one
commonly utilizes iterative techniques starting from an initially guessed value. Let
us start with a two variable system of two equations f(x,y) = 0 and g(x,y) =0,

f=@=2+(-3),
e R

This actual problem has two real solutions, see Fig. 1.

6F

(]

_.2. : o .4. =

Fig. 1 Geometrical representation of a multivariate polynomial system
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Fig. 2 Local solution with initial guess and iteration steps

A numeric solution starts with the initial value and proceeds step-by-step locally.
Depending on the method, we expect to converge to one of the solutions in an
efficient manner. Employing the initial value (4, —1) and a multivariate Newton’s
method, the solution after seven steps is (2.73186, 0.887092). Let us visualize the
iteration steps, see Fig. 2.

However, if the initial guess is not proper, for example (0, 0), then, we may have
a problem with the convergence since the Jacobian may become singular.

Symbolic Solution

Let us transform the original system into another one, which has the same solutions,
but for which variables can be isolated and solved one-by-one. Employing Grobner
basis, we can reduce one of the equations to a univariate polynomial,

gry = 2113 — 3120y + 832y?,

grxy = —65 + 16x +24y.
First, solving the quadratic equation gry, we have

v = (195 — 2v/2639),

v = 14 (195 +2v/2639).
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Fig. 3 Global solution—all solutions without initial guess and iteration

Then employing these roots of y, the corresponding values of x can be computed
from the second polynomial of the Grobner basis as

x = 4 (130 +3v2639),
x =2 (130 — 3v/2639).

So, we have computed both solutions with neither guessing nor iteration.
In addition, there is no round-off error. Let us visualize the two solutions, see
Fig. 3:

Let us summarize the main features of the symbolic and numeric computations:

Numeric computations:

— usually require initial values and iterations. They are sensitive to round-off
errors, provide only one local solution,

— can be employed for complex problems, and the computation times are short in
general because the steps usually translate directly into computer machine
language.

Symbolic computations:

— do not require initial values and iterations. They are not sensitive for round-off
errors, and provide all solutions,

— often cannot be employed for complex problems, and the computation time is
long in general because the steps usually require computer algebra system
software.
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Ideally, the best strategy is to divide the algorithm into symbolic and numeric
parts in order to utilize the advantages of both techniques. Inevitably, numeric
computations will always be used to a certain extent. For example, if polynomial
gry above had been degree, say, five, then a numeric univariate root solver would
have been necessary.

Hybrid (symbolic-numeric) Solution

Sometimes, we can precompute a part of a numerical algorithm in symbolic form.
Here is a simple illustrative example.
Consider a third polynomial and add it to our system above:

h=(x+3+(-)-s

In that case, there is no solution, since there is no common point of the three
curves representing the three equations, see Fig. 4.

However, we can look for a solution of this overdetermined system in the
minimal least squares sense by using the objective function

G=f+g+I,

Fig. 4 Now, there is no solution of the overdetermined system
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(e (1))

and minimizing it.
Employing Newton’s method, we get

x=2.28181,y= 0.556578.

The computation time for this was 0.00181778 s. The solution of the overde-
termined system can be seen in Fig. 5.

Here, the gradient vector as well as the Hessian matrix is computed in numerical
form in every iteration step. But we can compute the gradient in symbolic form:

1
grad = (ﬁ (2x(173 + 192(—2 + x)x) + 216xy — 16(41 + 26x)y* +

137829 n 555x n 27x% n 60527y
512 8 8 128

767y B 105y* —|—6y5>

64(1 + 2x)y* 4 3(—809 4 740y)) —

6321y?

2 2 2.2

41xy — 1327y — —— 4+ 6xy° 4+ 6%y + ——
Ixy — 13x 6 Xy X >

Employing this symbolic form the computation time can be reduced. The
running time can be further reduced if the Hessian matrix is also computed
symbolically,

0.0

-05 |

-1.0l . —
1.0 1.5 2.0 25 3.0

Fig. 5 The solution of the overdetermined system
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555 27
22 4 y(—a1+6y)+x( - 4 29(—13+6
13 4 12n(—d 4+ 3x) + 2 —13y7 4 43 g ¥) (4 N y)>
H= 60527 , 6321y
W741x713x 5

35 4 y(—41+6y) +x(Z +2y(—13+6y)) 30142
+ 123y + 122y + Ty7210y3 1 30y*

Now, the computation time is less than half of the original one.

So using symbolic forms, the computation time can be reduced considerably.
This so-called hybrid computation has an additional advantage too, namely the
symbolic part of the algorithm does not generate round-off errors.

Another approach of applying the hybrid computation is to merge symbolic
evaluation with numeric algorithm. This technique is illustrated using the following
example.

Let us consider a linear, nonautonomous differential equation system of n vari-
ables in matrix form:

d%y(x) = A(x)y(x) + b(x),

where A is a matrix of nxn dimensions, y(x) and b(x) are vectors of n dimen-
sions, and x is a scalar independent variable. In the case of a boundary value
problem, the values of some dependent variables are not known at the beginning
of the integration interval, at x = x,, but they are given at the end of this interval,
at x = xp. The usually employed methods need subsequent integration of the
system, because of their trial-error technique or they require solution of a large
linear equation system, in the case of discretization methods. The technique is
based on the symbolic evaluation of the well-known Runge—Kutta algorithm.
This technique needs only one integration of the differential equation system and
a solution of the linear equation system representing the boundary conditions at
X = Xp.

The well-known fourth-order Runge—Kutta method, in our case, can be repre-
sented by the following formulas:

Rl,‘ = A(xi)y(xi) + b(x,»),
B2, = A+ ) (0) + 549 + b+ ).
B3 = A+ 4) (000) + 5 + b+ ).

R4i = A(Xi —+ h) (y(xi) —+ RS,h) + b(xi —+ h)

and then the new value of y(x) can be computed as:

Vit = y(x) + (Rl,-+2(R2iJ6rR3,-)+R4,-)h.
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A symbolic system like Mathematica, is able to carry out this algorithm not
only with numbers but also with symbols. It means that the unknown elements of
Ya = ¥(x,) can be considered as unknown symbols. These symbols will appear in
every evaluated y; value, as well as in y, = y(x;) too.

Let us consider a simple illustrative example. The differential equation is:

(&309) = (1=9r(0) =
The given boundary values are:
y(1) =2

and
y3) = -1

After introducing new variables, we get a first-order system,

and

1200 = S3()

the matrix form of the differential equation is:

310, 020) = [ 5 o010 2140, 4

Employing Mathematica’s notation:

Alx ]1:={{0,1},{1-1/5x%x,0}};
blx_]1:={0,x};

x0=1;

v0={2.,s}

The unknown initial value is s. The order of the system M = 2. Let us consider
the number of the integration steps as N = 10, so the step size is h = 0.2.

yvsol=RKSymbolic[x0,v0,A,b,2,10,0.2];

The result is a list of list data structure containing the corresponding (x, y) pairs,
where the y values depend on s.

ysol[[2]][[1]]

{{1,2.},{1.2,2.05533+0.200987 s},{1.4,2.22611+0.407722
s},

{1.6,2.52165+0.625515 s},

{1.8,2.95394+0.859296s}, {2.,3.53729+1.11368s},
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{2.2,4.28801+1.39298 s},
{2.4,5.22402+1.70123 s}, {2.6,6.36438+2.0421 s},
{2.8,7.72874+2.41888 s},{3.,9.33669+2.8343 s}}

Consequently, we have got a symbolic result using traditional numerical Runge—
Kutta algorithm.

In order to compute the proper value of the unknown initial value, s, the
boundary condition can be applied at x = 3. In our case yl1(3) = —1.

eqg=ysol[[1]][[1]]==-1
9.33669+2.8343 s==-1

Let us solve this equation numerically, and assign the solution to the symbol s:

sol=Solveleq, sl
{{s ->-3.647}}
s=s/.sol
{-3.647}
s=s[[1]]
-3.647

Then, we get the numerical solution for the problem:

ysol[[2]]1[[1]]
{{1,2.},{1.2,1.32234},{1.4,0.739147},{1.6,0.240397},
{1.8,-0.179911}, {2.,-0.524285},{2.2,-0.792178},
{2.4,-0.980351},{2.6,-1.08317},{2.8,-1.09291},
{3.,-1.}}

The truncation error can be decreased by using smaller step size h, and the
round-off error can be controlled by the employed number of digits.
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