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Abstract

Significance of interpolation of deflection of the vertical by means of torsion
balance measurements is pointed out, followed by outlining its fundamentals. Thereafter,
its practical methods of solution will be presented.
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Introduction

Knowledge of deflection of the vertical is essential in geodesy, relating to
positioning data measurable in Earth's real gravity field and those computable in some
normal gravity field. At the same time, knowledge of deflections of the vertical offers an
important possibility of the detailed geoid determination. For geoid determination, a dense
net of values of deflection of the vertical is necessary. Astrogeodetic determination of
deflection of the vertical is extremely expensive and tedious, therefore in practice a sparser
net of astronomical stations has to be put up with and this astrogeodetic net is interpolated
by different methods.

Interpolating the values of deflection of the vertical may be made either by gravimetric
interpolation methods involving gravity anomalies, or - with the knowledge of curvature
gradients of potential surfaces of the gravity field - by using torsion balance measurements.
From among the two methods, practical applicability of the former is rather restricted,
adequate accuracy being conditioned by the availability of detailed gravity data around the
point to be determined at a distance of min. 2000 km. Besides, the gravimetric
interpolation method is excessively computation-intensive and difficult to be programmed.

All these urge to consider the interpolation of deflection of the vertical based on

torsion balance measurements. Under Hungarian conditions, in addition to gradient values

W..and W, ,also curvature data W,,and W, = W, - W,, are available with great

precision. Since earlier torsion balance measurements were made mainly for geophysical
prospecting, mostly only gravity gradients have been processed. Up to now, gravity
curvature values essential in geodesy - rather promising for detailed determination of
deflections of the vertical - have been left unprocessed.

Lorand Eo6tvos was the first to point out that interpolation of deflection of the
vertical is possible from torsion balance measurements, and made also relevant trial
computations (EOTVOS 1906, 1909; SELENYI 1953). The method of Eb6tvos was further
developed in a simplified form by Janos Renner (RENNER 1952, 1956, 1957), without
having an opportunity to safely check the computations. Besides the two Hungarian



scientists above, only two members from the staff of the Columbus University USA: J.
Badekas and I. Mueller (BADEKAS - MUELLER 1967), as well as U.Heineke in Hannover
(HEINEKE 1978) had been concerned with the subject, - but even their works had still much
to be cleared.

After outlining the fundamentals of interpolation of deflection of the vertical
relying on torsion balance measurements, possible practical computation methods will be
presented.

Actually, this seems to be the most economical method for interpolating deflections
of the vertical, thereby for precise geoid determinations.

1. Fundamentals of the interpolation method

Let us consider distribution of deflections of the vertical in a small area of Earth's
surface where torsion balance measurements are available.

Let computations be referred to a Cartesian system, having an arbitrary point P,
within the examined area as origin. Let +x and +y be the axes of the system point to the
north and to the east, respectively, and let axis z coincide with vertical direction at P, so
that its positive branch points downwards. Although these directions vary from point to
point, at any point of a moderate area - of a size at most 0.5° x 0.5° the same coordinate
directions may be taken to a fair approximation, namely the effect of deviation due to
meridian convergence is within the range of reliability of observations (SELENYI 1953).
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Fig. 1

Thereby, direction z at any point P, of the concerned area is parallel to the z-axis
through point P, , and the direction x; to the tangent of astronomical meridian through
point Py, as illustrated by the arbitrary point P, (actually i=/) in Fig. I. The z-axis at
point P; being parallel to the vertical at origin P, , presumably, direction of vector g; at

point P; does not coincide with direction z. In Fig./., vector PV 1is, in fact, projection

of vector g, onplane xz, while vector P H is projection of component g , of vector



g, on the same plane. (There are negligible deviations between vectors ﬁ and g, ,as
well as E_H and g ).

Be @ the astronomical latitude of point Py, and let A®, symbolize the angle
between direction P,V and z at point P;, so the astronomical latitude of point P; is:

D, =D +AD,
While, according to Fig.1:
-8, =& SinAD,

it is to be written, for a small angle A®, , as:

AD, =8 (1)
&

The same train of thought leads for the variation of astronomic longitude in plane yz to:

AA, cos®D, = 8 )
&

Equations (1) and (2) yield components N and E of the angle between geoid normal at
points Py and P;. Values A®, and AA, for P, and some P, may be determined in a

similar way. These may be applied for writing differences between P, and P;:

(Acbz—A®1)=—é(gx2—gxl)=—é[(a—Wj —(8—WH 3)
g gl\ox ), ox ),
and
(AAz—AA1>coscT>=—é(gﬂ—gy1)=—é{[a—WJ —(G—W” )
g gl\a ), Loy)

where W is the potential of Earth's real gravity field, while & and ® are the mean

values of gravity, and astronomical latitude between points P; and P, . By analogy with
(1) and (2), (3) and (4) yield components N and E of the angle included by level surface
normal at P; and P>.

By introducing notations Z—W =W, and aa—W =W, , Egs. (3) and (4) may
X y
be written as:
1
AD, —AD, :_E(sz_le) &)

and,



~ 1
(AA, —AA, )eos® = —— (7, -, (6)

~

respectively.

Level surfaces of the potential of normal gravity field, normal gravity, and
directions of normal gravity vectors, in this relation, geodetic latitude and longitude of any
point, termed normal geodetic latitude ,¢ and normal geodetic longitude ,A , may be

interpreted on the analogy of the Earth's real gravity field.
Relationships similar to (5) and (6) may be written between the variation of the gravity
field direction in normal gravity field, that is, of normal geodetic coordinates ,¢ and , A

of points P, and P, and the derivatives conform to potential of the normal gravity field
(normal potential):

1
An(PZ _An(Pl = _§(Ux2 _le) (7)
and

1
(AL, —A A )cosd = —§(Uy2 -U,) (8)

where U is the normal potential, and Yy is the mean value of normal gravity between
points P; and P, .

Inside a limited area of size 0.5° x 0.5° , approximations Y=g and dND:n@ =@ are
permissible - and so are single values ¢ and ¢ valid for all the area rather than between

two neighboring points alone (BADEKAS and MUELLER 1967), to be indicated simply by g
and o .
Let us subtract Egs (5) and (7), as well as (6) and (8) from each other:

[(A(DZ _An (Pz )_ (A(Dl _An (Pl )] g = _(WxZ - le )+ (UxZ - le ) (9)
[(AAz A\, )_ (AA1 A\ )] gCOSP = _(WyZ -W, )+ (UyZ -U, ) (10)
By definition, differences (9) and (10) between astronomic and normal geodetic

latitudes and longitudes yield differences of components & and m of deflection of the
vertical between points P; and P;:

(§2 _al)g:_(sz _er)+(Ux2 _le) ’ (11)
(,-n)g =0, -, )+(U,,-U,,). (1)
Introducing notations

A%u = &2 _EA >
Ang, =m, -1,

and



AW =W -U (13)
leads to equations:

gA(gZI = _AWVZ +AWV1" (14
gAn,, =AW, + AW, . (15

Remind that in classic geodesy, deflection of the vertical is frequently interpreted as:

E=0-0
n=(A-A\)coso

where @ and A are astronomic co-ordinates, while ¢ and A are geodetic (ellipsoidal)
co-ordinates of point.

By physically interpreting the ellipsoid, serving as reference surface, as one level
surface of the normal gravity field, then ellipsoidal and normal geodetic co-ordinates are
related as:

o=,0—K , (16)
A=A, (17)

where x is the difference of directions of the normal gravity field between point P on the
earth surface and the ellipsoid surface along the normal plumb line at point P . In (16) and
(17), normal plumb line being a plane curve lying in the normal meridian plane of point P
has been reckoned with.

For an altitude %~ of point P over the ellipsoid, applying curvature of the plumb
line of normal gravity field:

B .
K=h—sin2 18
R o) (18)

where [ is the dynamical flattening of normal gravity field, and R is the Earth's radius
(MAGNITZKI and BROVAR 1964).

By differentiating (18), it is obvious that in the mentioned 0.5 x 0.5° area,
variation of « is practically negligible. Hence, (11) and (12) are also valid for the classical
geodetic interpretation of deflection of the vertical.

Thus, in the following, when interpreting of deflection of the vertical it is needless
to distinguish between the two conceptions, permitting to use the concept of deflection of
the vertical in both interpretations.

Components of deflections of the vertical - more closely, their values multiplied by
g , that is, horizontal components - seemed to be determined by first derivatives of the
potential. While torsion balance measurements yield second derivatives

_ow otw ond _ow

w =
S R Y oxoy




Thus, the computation problem is essentially an integration to be solved by approximation

A X n
P,
By
S
Fig. 2

To this aim, first the co-ordinate transformation in Fig.2 will be performed,

according to matrix equation

{n}_{cosau smocu}{x}
s| |-sina, cosa,, ||¥

Accordingly:
W, = aW W o —+ W % =W, cosa,, +W, sina,,
on Ox On 0Oy On
(19)
W, = w 8W O —+ W % =-W_ sina, +W, cosa,,

05 Ox Os Oy Os

while second derivatives are:

o'W 8 w W, W
— > ——cos’ o, +—-sin” o, +——sin2a,,

on®  ox y X0y
2 2

o V2V o VzVsin o, +a—V£/cos2 o, +a—Wsin2oc12 (20)

Os ox 0 Ox0y

and
oW _W W W
= cos2a,, + - |sin2a.,,
onos  OxOy 2 8y ox

. o'W . .
This latter W, = P seems to result from torsion balance measurements, with the
nos

knowledge of azimuth o, of the direction connecting the two points examined.
Now, by integrating the left-hand side of (20) between limits n; and n; :




A2
‘ de{aWj —(aWj W, W, @)
;, Onos os ), os ), ‘

If points P, and P, are close enough to let variation of second derivative W, be
considered as linear, then integral (21) may be computed by trapezoid integral
approximation formula:

[ Z%Ka Wj +(a Wj }("2 )= 0+ .. )

onos onos 2

where n, =n, —n, is the distance between points P, and P».
On the other hand, by applying transformation (19), integral (21) yields:

Wo-W, = _(sz - le)Sinalz + (WyZ -W, )COSOLIZ . (23)

The same train of thought yields a similar expression for potential U of normal
gravity field:

U,-U,=U,-U,)sina, +{U,,~U, Jcosa,, . (24)

X y

Subtracting (23) from (24) yields variation A®,, of horizontal force component

between points P; and P, in direction n . By taking (23) into consideration, and
introducing notation

gA®, =G, (25)
the following is yielded:

Gy, = (- AW, + AW, )sina, —(~ AW, , + AW, Jcos
after substituting (14) and (15):

G,, = gA&,, sina,,, — gAn,, cosa,,

or by introducing notation

2 Ge
g
equation
T, = Ag,, sina, —An,, cosa,, (26)
is yielded.



The left-hand side of (26) may be computed by using (22). When using notation
(13):

T, =<[am,), +(aw,), 1= @7)
2 g

ns

with AW, to be computed from (20):
AW, =AW, sin2a., + AW cos2a,, (28)

where AW, =W,-U, and AW =W, -U, . Remindthat W, and W,  are
gradients obtainable from torsion balance measurements, while U, and U, are

gradients of the normal gravity field, referred to, e.g., the Hayford ellipsoid, in E6tvos
units (HEINEKE 1978):

U, =10.26¢c0s’ ¢ (29a)
U, =0 (29b)

Now, by substituting (28) into (27):

T, = % (AWAl +AW, )sin 200, + (Anyl +AW,, )cos 2a12] (30)

which, compared to (26) yields the basic equation wanted, relating the variation of
components of deflection of the vertical between two points to gradients from torsion
balance measurements:

AE, sina,, —An,, cosa,, =

Zﬁ (A, +aw, Jsin2a, + (AW, + AW, Jeos2a, | 3D
g

X’

This is a very important relationship between gradients from torsion balance
measurements, and deflections of the vertical.
Being given a third point P; forming a triangle with P; and P, , leads to further two
relationships

T); = A&y, sinol,; —Any, COs L, (32)
and

Ty = AGy; sina; — Any, cos L 33)
as in (26).

Proceeding along the triangle formed by P, P, and P; variation of components of
deflection of the vertical must be zero, permitting to write further two relationships in
addition to the already deduced ones (26), (32) and (33) ; that is:



Aézl + Aasz + AélS =0 (34)
and
An,, +Any, +An,; =0 (35)

Thus, for any single triangle, there are six unknowns: AE,, ,AE&,, ,AE,; ,
AE,, , AE,, , AL, ; for them five, mutually independent equations: (26), (32), (33), (34),
(35). may be written. Unambiguous solution to the problem requires further information.

I:)2 P4 n-1

Pn-z
P,

Fig. 3

Now have a look at the interpolation chain of »n points in Fig.3. The n points
form a chain of n-2 triangles with 2n-3 triangle sides, each having two unknown
components of deflection of the vertical along sides - hence, for all of the network, there is
a total of 4n-6 unknowns. While for the n-2 triangles, 2n-3 equations of the (26) type,
and 2n-4 ones of the (34) and (35) types may be written, hence for the 4n-6 unknowns
there are 4n-7 equations in all. For an unambiguous solution to the problem, a further
information (equation) - independent of those above - is required.

For instance, in case of a chain of interpolation seen in Fig.3 , if values of
components &, ,&, or m,,mn, ofdeflections of the vertical at the two extreme points are

known, it may be written

n—1
ZA@H,[ = E,’n - &1 (36
i=1

or

n—1
ZAnHl,i =n,—N (37

i=1

So that a total of 4n-6 equations may be written for the 4n-6 unknowns, permitting
unambiguous determination of all unknown differences A& and An  between

components of deflection of the vertical.



2. Practical Solution of Interpolation

In those above, fundamentals of interpolation of deflection of the vertical applying
torsion balance measurements were considered. Interpolation can be solved by means of
various practical computation methods. Every practical solution relies on the fundamentals
presented above, but the different computation methods are not equivalent - mainly as to
reliability of their respective results. Let us have a look at the practically possible
solutions.

Practical solutions belong to two groups. In one variations, A An of
components of deflection of the vertical are taken as unknowns, while the other group,
components &, 1 of the deflection of the vertical at the points are the required unknowns.
In the first case - when differences between the components of the deflection of the vertical
between points are taken as unknowns - there are three possibilities of solution:

- inverting the complete coefficient matrix assembled of coefficients of the 4n-6
equations produced by applying (26), (34), (35), (36), (37) type equations, that is,
determining 4n-6 unknown values of differences AE and An of deflection of the
vertical,

- taking the group of the coefficient matrix above referring only to the absolutely
necessary 2n-2 unknowns into consideration,

- determining unknowns A& Amn step by step (by successive elimination).

2.1. Traditional Solution Method

The solution method considered as traditional is due to Lorand Eétvos (EOTVOS 1906,
1909; SELENYI 1953). In this method, in the interpolation nets, the differences of
deflections of the vertical between neighboring points are considered as unknowns, writing
for the unknowns AE and An equations of types (26), (34), (35); as well as (36), or
(37). Now, for arbitrary interpolation net (or chain) of n points, 4n-6 unknown values of
differences A and Amn of the deflections of the vertical are to be determined. In the
preceding item, it was shown that for an unambiguous determination of unknown values
AE and An , the same components of deflections of the vertical hence either & or n

values at two arbitrary points of the interpolation net (possibly, at end points) are needed.
Since in most of the cases, it is not sufficient to know differences AZ , An between

neighboring points, but the very &, n values at every point are needed, it is insufficient to
know one component of the deflection of the vertical at two points of the net, but also the
value of the other component at some point should be known. In other words, if the very
€, n values at points of the interpolation net are to be determined, then, in addition to
torsion balance measurements, two known (astrogeodetic) points are needed, with the
knowledge of both £ and m values in one of them, and either the & or the n value in
the other. Practically, both & and m values in the two known astrogeodetic points are
available, thus, there is an excess of data, the problem is redundant. In this case, the most
probable value of the unknowns is determined by adjustment.
In practice, solution to the adjustment problem is made by
using the least squares method.

10



2.2. Reducing the Number of Unknowns AL , An

Computing interpolation chains by the method in item 2.1 involves much of needless
excess work, a drawback both for accuracy and economy of the method. In case of the
conventional computation method, excess work consists in inverting, for a chain of n
points, all coefficient matrices belonging to the 4n-6 unknowns, - although for an
unambiguous solution to the problem only 2n-2 unknowns are needed. For a high =
value, this may significantly reduce accuracy of the interpolated A& , An values.

To reduce the number of unknowns, let us compose the system of 4n-6 unknowns
into two groups. One of the groups contains only the necessary unknowns (for instance, for
the chain in Fig.3, only the AE , An values for sides PP, , PoP3, P3Py, P4Ps , ... the
other group will contain the needless unknowns (e.g. A& , An for the remaining sides
PP5, P,Py, PsPs, ...). The other group of unknowns is omitted in the following, and only
coefficient matrix of the system constructed of equations for the needed unknowns is to be
inverted. This latter is merely of size (2n-2) x (2n-2), hence much less than that of size
(4n-6) x (4n-6) in the conventional case.

Now let us see what necessary equations are sufficient to be written.

Let us consider Fig.3 again! Equations (26), (32), (33) yield for the first triangle (P,P,P5),
eliminating unknowns A&,, and Anj;, :

A, sina, —Any cosa, =T, (38)
AL, sin o,y —Ang, cosa,; =Ty (39)
AL, sino, —An,, cosay; — ALy, sinay, + Ang, cosay, =T, (40)

while for each of the other triangles further two equations result:

A&, aSIna,, o —AN,,  co80,, 0 =T, ) (41)
and
AE,,, sIn0, ,; — AN, COSQ,, ; — 42)
AEAHZ,HI Slnai+2,i + Ani+2,i+1 COSO(‘HZ,:‘ = Ti+2,i

where i=23,4,..,n-2.
These make up 2n-3 equations with 2n-2 unknowns A and Amn . For an

unambiguous solution to the problem, in conformity with our previous statements, further
information (equation) is needed to obtain from (known) deflections of the vertical at
points of the interpolation net. Provided &, , m, and &, , m, values are given at two

arbitrary points of the interpolation chain (possibly at end points), then, in addition to (38),
(39), (40), as well as (41), and (42), also conditional equations (36), (37) may be written,
and the most probable values of unknowns A& , An may be determined (by adjustment).

2.3. Interpolation by Successive Elimination

Determining unknowns Af , An by successive elimination rather than by
inverting coefficient matrix of the unknowns offers practical advantages.

11



To present essentials of the step-wise determination, let us consider again the
interpolation chain in Fig.3. Irrelevant unknowns (components A& , An of deflection of

the vertical for sides P,Ps, PoPs , P3Ps , P4Ps , ...) will be omitted, only those for sides
PP, , P,P;, P3P4y, P4Ps, ... are to be determined.

Let us determine first the unknowns for the first side PP, of triangle P,P,Ps
starting from the trivial relationship:

A, =u=au+b, (43)
where

a =1 and b =0 (44)

By writing equation (43) into (26), and expressing the An,, value:

a, sin o b sina,, —T
1 12 u+ 1 12 12

Ang, =
cosa,, cosa,,
or concisely:
An, =u=cu+d, (45)
where
a, sin o
Cl — 1 12
cosa,,
and
b sina,, — T,
dl — 1 12 12 (46)

cosa,,

Let us determine further unknowns for the next P,P; side of triangle P,P,P; . By
eliminating unknowns A&;, and An,, from (26), (32), (33), (34) and (35) for triangle
PP,P; and introducing notation:

O = (sin o, cosa,, —sina,, cosa,, ) (47)
yields for unknowns AE,, and An,,:

AE,, = (T23 cosa,, + 75, cosa,, + AL, sina,, cosoL,;, —An,, COSOL;, COSOL )Q
and

An,, = (T23 sina,, + 75, sino,, + A, sina;, sina,, —An,, cosa,, Sind.,, )Q

Substituting (43) and (45) :

12



AE,, = [(a1 SIN 0L, COSOL,; —C, COS Ly, cosoc23)14 +
T);sinay, + 715, sin ;4 b, sin o, €OSOL,; —d| COSOL;; COSOAL,, ]Q
and
AN, =[(a, sin oy, cosa,;, — ¢, cos oLy, COS Oy, Ju +

T,, cos iy, + T}, C0S,,+ b, sinai, sina,, —d, cosay, sinat,; JO
or, with other notations:

AE,, =a,u+b, (48)
An,, =cu+d, (49)

where

a, = (a, sin o, cos oL, — ¢, COS QL COS ALy, )0

b, = (b1 SIN 0Ly, COSOLy; —d, COSOL;, COSTL,; +T1); COSAy, + T3, COSOL )Q (50)

¢, = (a, sina,, sino,; — ¢, cosa, sina,, JO

d, = (b, sin oy, sina,, —d, cosa,, sin o, + Ty sin oy, + Ty, sin oy, )O (51)

Coefficients a; and ¢; seem to depend exclusively on the net geometry, while coefficients
b; and d; on the net geometry and on the second potential derivatives depending on the
gradient of the level surface.

Eqs (43), (45), (48) and (49) may be written in turn for all triangles of the chain in
Fig.3. In general, for the i-th triangle:

AE&HZ,H—I =a, u+b,, (52)
ANy i =Cigl + d, (53)

leading to a single-parameter system of equations where all unknowns are functions of
parameter u .

Like before, to determine parameter u , also here further information is required.
Provided that the values of components & and mn of deflection of the vertical at two
extreme points of the net are known, it may be written:

Ag,, = Saiu +§bl. (54)
i=1 i=1

and

n—1 n—1

An, =Y cu+y.d; . (55)
i=1 i=1

Value of parameter u may be determined from either (54) or (55). Substituting this
u value into (52) and (53) permits to easily determine unknown AE , An values of

differences of deflection of the vertical between all necessary pairs of points.

13



Simultaneously, by writing (54) and (55), the most probable u value will be
obtained by adjustment. To this aim, e.g. the Badekas & Mueller adjustment model suits
due to its simplicity (BADEKAS and MUELLER 1967).

In conformity with the principle of this adjustment model, /; and x; values with

f(li"xi) =0

are to be found, where /; and x; are the adjusted values of observed magnitudes, and of
the required parameters, respectively. By expanding function f and keeping only first-
order terms,

0 0
f(lol.,xm)+a—£vi +8_£6xi =0

where v; are the corrections of observed magnitudes /y; , while &x, the variations of

preliminary values x; ; that is:

li = ZOi +v;

X; = X, +0x;,

In matrix form:
F+Lv+Ax=0

where:

] [ [
F—[f(lowxol')] > L_|:8]l-:| and A |:axl-:|

With this model applied to the problem - that is, to (54) and (55):

i=1

zeroing the preliminary xo; value ( here xo; = u ). By denoting variances of £b and Zd
by ui, and pl, , weight matrix P, and its inverted P"' become:

14



— 0
P: M;b P—l :|:M§b 0 j| .
0 i 0 M;d
Wsq

Let us form now matrix product S=LP'L ( L being transposed of L),
then its inverted S :

1
— 0
S — |:M§b (3 :| , S—1 — H;b |
0y 0 —
Hyy

With the above notations, the solution in general form is:
x=—(A'ST'A)'A'SF ,

in the actual case:

n—1 n-l1 n—1
: ai[ b, —imjuid +Zci(

i=

n—1

Zdi —MNu juéb

1

1 1
n—1 2

n-1 2
S e (Se ]
i=1

or by denoting solutions of (54) and (55) by u, and u, , respectively:

=

n—1 2 -1 2
(Zaz] Héd”g (Zci] Héb”n
= i=1
> (56)
T

-1

5

=

_I_
B n—1 2
2
Zai Hsq T
i=1

Resubstituting this u value into (54) and (55), & and m values computed with
values of Xa, Xb, Zc,2d will generally deviate from the difference of components of
deflection of the vertical given between extreme points. The resulting misclosures are
considered with opposite signs as corrections and distributed between terms of the given

sums Xb and Zd, according to their variances,- where covariances of terms b; and d;
are assumed to be negligible.

2.4. Direct Computation of Components &, n
The practical solutions above are more or less advantageous to be applied to

interpolation chains (e.g. that in Fig.3 ) with known values of deflection of the vertical at

15



the beginning and end points. Application of the same solution methods may involve
unpredictable computational difficulties if interpolation is not made along a chain but for
points of an arbitrary, extensive triangulation network. Although writing intermediary
equations of the (26), (32), (33) type represents no problem, but it is rather intricate to
generate constraining condition equations (34), (35) by a computer. If moreover, the net
includes more than two astrogeodetic points with given &, n values, then computer
generation of the constraining condition equations is rather problematic; during processing,
the computer program may get into an infinite cycle. To clear and solve similar problems,
graph theory considerations are needed (TAKATSY, 1985).

All these difficulties may be overcome by considering &, n values of deflection of
the vertical at the point as unknowns in interpolating rather than differences AE, An
between the points. Accordingly, let us transform (26) -type relationships by substituting:

A‘iij =§i _éj
AT],; =N;,—M;
to
T, =&,sina, +n;cosa, —& sina,; —m,coso; . (57)

This significantly reduces the number of unknowns, namely, there will be two unknowns
for each point rather than per side. (In an arbitrary network, there are much less of points
than of sides, since according to the classic principle of triangulation, every new point
joins the existing network by two sides. For a homogeneous triangulation network, the
side/point ratio may be higher than two.) Another of its advantages is that there is no
requirement for writing constraining conditions (34), (35) for the triangles, they being
contained in the established observation equations. For an interpolation net with m
astrogeodetic points with known values of deflection of the vertical, with the relevant
constraints the number of unknowns may be further reduced, with an additional size
reduction of the normal equations matrix.

Let us see now, how to solve interpolation for an arbitrary network with more of
astrogeodetic points than needed for an unambiguous solution, where components of
deflection of the vertical are known, and the &, n values are determined by adjustment.
Relation between torsion balance measurements W, and W, and unknown &, n values

of the deflection of the vertical is obtained from (57):

T, = Z—’; (7, -v,), + v, -v), Jsin2a, + (@, -v,) + 0w, -U, ) Jeos 20, |

(58)

where U, and U, being normal values of gradients. The question arises what data are

to be considered as measurement results for adjustment: the real torsion balance

measurements W, and W, , or T, values from (58). Since no simple functional

relationship (observation equation) with a measurement result on one side, and unknowns
on the other side of an equation can be written, computation ought to be made under
conditions of adjustment of direct measurements, rather than with measured unknowns
(according to adjustment group V) - this is, however, excessively demanding for
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computation, requiring excessive storage capacity. Hence concerning measurements, two
approximations will be applied: on the one hand, components of deflection of the vertical
measured at astrogeodetic points are left uncorrected - thus, they are input to adjustment as

constraints,- on the other hand, magnitudes T, on the left hand side of fundamental

equation (57) are considered as fictitious measurements and corrected. Thereby
observation equation (57) becomes:

T, +v, =§,;sina,; +n,cosa, —& sina, —n,cosa, (59)

permitting computation under conditions given by adjusting indirect measurements
between unknowns (adjustment group /7).

The first approximation is possible since reliability of the components of deflection
of the vertical determined from astrogeodetic measurements exceeds that of the
interpolated values considerably (a principle applied also to geodetic basic networks).
Validity of the second approximation will be reconsidered in connection with the problem
of weighting.

For every triangle side of the interpolated net, observation equation relying on (59):

v; =&, sina,; +m;cosa, —§ sina,; —m,cosa, — T (60)

may be written. In matrix form:

v_A Xx n |
(m,) (m,2n)(2n,1) T (m,l)

where A is the coefficient matrix of observation equations, X is the vector containing
unknowns & and m, | is the vector of constant terms; m is the number of sides in the
interpolation net; and n is the number of points. Non-zero terms in an arbitrary row i of
matrix A are:

[ .. SIno, coso, —sino,; —coso; .. J (61)

while vector elements of constant term | are the Tl/ values.

Constraint values of deflection of the vertical fixed at astrogeodetic points modify
the structure of observation equations. Be

ékzgkc:givena k:1,2,...,m1
Ny =My =given, k=1,2,...,m

given values of deflection of the vertical. Substituting them into observation equations (60)

reduces the number of unknowns, modifying coefficient matrix A and constant term
vector | of observation equations. If, for instance, in (59), &, =&, = given, then the

corresponding row (61) of matrix A is:

l .. Sino,  COSQL; .. —COSO; .. J
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the changed constant term being: 7, +&,sina,; ; that is columns of &, , and of
coefficients of &, are missing from vector X, and matrix A, respectively, while
corresponding terms of constant term vector | are changed by a value &, sina,; . In an

interpolation net, at certain points, & values, at other points 1 values may be given.
However, at the same astrogeodetic point, both & and n values are usually known. In this
case, coefficient matrix A, vector X, and constant term vector | of observation
equations are further modified , as described above.

Adjustment raises also the problem of weighting. Earlier the approximation comprised -
rather than direct torsion balance measurements - starting from fictive measurements
produced from them. Fictive measurements may only be applied, however, if certain
conditions are met. The most important condition is the deducibility of covariance matrix
of fictive measurements from the law of error propagation, requiring, however, a relation
yielding fictive measurement results, - in the actual case, Eg. (58). Among quantities on
the right-hand side of (58), torsion balance measurements W, and W, —may be

considered as wrong. They are about equally reliable (Z1F£), furthermore, they may be
considered as mutually independent quantities, thus, their weighting coefficient matrix
Q,w Will be a unit matrix. With the knowledge of Q,,, , Weighting coefficient matrix

Q,; offictive measurements T (after DETREKOI 1991) is:
Q,=FQ,,F=FF

Q,w =E being a unit matrix. Elements of an arbitrary row i of matrix F are:

or, ) [ or, or, ) (T ) (en, or,
ow, ), \ow, ), "7 \ow,), \ow,) \ow,) 7 \ow, )

For the following considerations let us produce rows f, and f, of matrix F

(referring to sides between points P, — P, and P —P, respectively):

f, = [nlzk(sinZOL12 ,sin2a,, 0,0,..,0,cos2ay, ,cos2a,,,0,0,..,0, )]
and
fz* = [n13k(sin20c13 ,0,sin2a,; 0,0,...,0,cos2a;,0,cos2a,;,0,0,...,0, )]

where k=1/4g is constant. Using f, , variance of T value referring to side P, —P,
is:

m’ = nlzzkz(2sin2 20.,, +2cos’ 20(12>= 2k*n},
while f, and f, yield covariance of T values forsides P —P, and P —P,:

_ 2( - .
cov =n,n;k (sm 20, sin 20, +c0s2a.,, COS 20L13) .

Thus, fictive measurements may be stated to be correlated, and the weighting coefficient
matrix contains covariance elements at the junction point of the two sides. If needed, the
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weighting matrix may be produced by inverting this weighting coefficient matrix.
Practically, however, two approximations are possible: either fictive measurements 7 are
considered to be mutually independent, so weighting matrix is a diagonal matrix; or fictive
measurements are weighted in inverted quadratic relation to the distance.

By assuming independent measurements, the second approximation results also
from inversion, since terms in the main diagonal of the weighting coefficient matrix are
proportional to the square of the side lengths. The neglection is, however, justified, in
addition to the simplification of computation, also by the fact that contradictions are due
less to measurement errors than to functional errors of the computational model (to be
discussed later).

2.5. Interpolation for Corner Points of a Square Net

This interpolation method for an extensive area, developed by Janos Renner
(RENNER 1952, 1956, 1957) also requires inversion of all the coefficient matrix.
The gist of Renner's method is to determine values of deflection of the vertical at corner
points of an arbitrary square net rather than at torsion balance measurement points. To this
aim, the considered area is covered by a square net with 1 to 2 km side length, of N-S and
E-W lines, and the needed values of gradients W, and W, are interpolated for the

resulting corner points relying on known torsion balance measurements.

Any inner point of the square net is surrounded by eight neighboring points as seen
in Fig.4 , forming eight rectangular triangles giving rise to rather simple relationships for
components AE , An of deflection of the vertical at the mid-point.

9 2 o3

8 4

7 S 6 O 5
Fig. 4

Writing these equations for every point of the square net, each relationship for
differences A& , An occurs twice, hence, instead of eight equations per point there are

four mutually independent equations.
In his test computations, Renner considered the AE , An values as unknowns, but it is

more convenient to take the &, n values themselves as unknowns. Now, for eight points
P, + P, surrounding an arbitrary point of the interpolation net (e.g. P, in Fig.4), the

following rather simple equations may be written:
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T,=n,—-7m
\/ETB =& +n;—& —n

T,=8&,-¢

V2 s =8 —Ms—§ +m,
Tig =M +M,

\/ETU ==, -Mm; +& +my
Tig =-S5+,

\/ETW ==& +My +& —M,

1

Similarly, also T, values on the left-hand side of the equations are simple to compute,
namely, values of trigonometrical functions in 7}, cannot be other than 0 or 1. For any

interpolation net of arbitrary size, only these eight relationships may be written, except in
the surrounding of astrogeodetic points including constraining values &, n , due to their
junction.

2. 6. Application of the Matrix Orthogonalization Method

In any practical solution other than the method of successive elimination, in
applying the conventional adjustment procedure, difficulties in inverting a rather large-size
matrix may emerge. There are essentially two ways of adjustment in some problem: either
by the usual method of establishing and solving normal equations, or directly, by the
matrix orthogonalization method.

Solution of certain adjustment problems by the usual method - establishing and
inverting normal equations - fails a result of expected accuracy, because e.g. the coefficient
matrix of the arising normal equations is poorly conditioned. So practical solution to
adjustment problems is advisably done by the matrix orthogonalization method, avoiding
to establish normal equations, and the required, numerically more stable solution is directly
obtained by applying proper matrix transformations (VOLGYESI 1975, 1979, 1980).

The quite simple principle of the matrix orthogonalization adjustment method is
illustrated by the hypermatrix transformation,

where A is the coefficient matrix of observation equations, | is the vector of constant
terms, E is a unit matrix, O is a zero vector, W is a matrix with orthonormal columns,
and G™' is an upper triangular matrix.

To interpret algorithm of transformation (62), let us introduce notations: —a; 1is

the column 7 of matrix A ; w, isthe column i of matrix W ; e; is the column i of
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matrix E ; and @i is the column i of matrix G . With these notations, matrix
transformation (62) comprises the following steps:

a, w,
|: :| _((ai)<k>’wk{ :|
<k+1> id<k> gk

i=23,,rk=12..j-1

MEHEACE

where ||a1||E and HwiHE are Euclidean norms of column, vectors a, , and w, ,

respectively, while (a,,w,) and (Lw,) are scalar products of column vectors a,

and w, , and of vectors | and w,, respectively.
Matrix transformation (62) directly yields the wanted unknowns x; and corrections v; in
place of vector X and Vv respectively (VOLGYESI 1979, 1980).

Variances and covariances of unknowns x; are comprised in weight coefficient
matrix

Q(x) =G (G_1)* (63)

where (G™)" is transposed of G™ .

3.The Reliability of Interpolation

Different practical solution methods of interpolation do not yield equally reliable
values of deflection of the vertical. There are several possibilities to describe reliability, to
determine mean errors of interpolated values.

The simplest method yielding the most realistic information on reliability is direct
comparison of interpolated values to known values of deflection of the vertical. This is
feasible if there is a relatively dense net of astrogeodetic points, and some astrogeodetic
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points within the interpolation net may be handled as unknown (control) points, where
interpolated values of deflection of the vertical may be directly compared to astrogeodetic
values. There is another, again simple possibility to check reliability of interpolation
methods by creating different interpolation nets (chains) joining at common net points.
Interpolated values should be more or less equal at identical points of different nets -
obviously, the rate of deviations is characteristic of the reliability of interpolation.

If there is no possibility to directly check interpolated values, then reliability of the
interpolated values may also be determined by mathematical methods, relying on laws of
error propagation.

In applying the conventional adjustment method, mean errors of the interpolated
values of deflection of the vertical may be determined by the method known from the
variance-covariance matrix

2
My = 1o Qg

where p is the standard error of unit weight, while Q,,, is the weighting coefficient
matrix of unknown deflections of the vertical (DETREKOI 1991). Matrix  Q,,, is either

simply the inverse N of the coefficient matrix of normal equations, or, in more
complex cases, it is simple to compute by using N7.

Reliability indices of interpolated values of deflections of the vertical can also be simply
obtained by making the computation by the matrix orthogonalization method. In this case,
weighting coefficient matrix ~ Q, of interpolated deflections of the vertical may be

computed according to (63).

Compared to the case above, a more detailed consideration will be given to
reliability indices of results obtained by the successive elimination method. Here, too, our
essential problem is to deduce the reliability of interpolated deflections of the vertical from
reliability indices of starting data. Our examinations apply the general law of error
propagation. Let multivariate functions:

u=f(xy,z,...)
v=g(x,y,z,...)
w=h(x,y,z,..)

2
l"l“x cxy sz
My cyz

2
¢ zx ¢ zy n Xz

where p’ is the variance (mean square error) of variable i, and ¢; 1s the covariance of

independent variables i and j :
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Cy = ’”@/|“t ”“j‘

T

is the correlation coefficient between variables i and j . Applying notation

of of of ]

o oy oz

og O0g 0g
F=|lox o oz

oh ©oh Oh

o oy oz

( F 1istransposed of F), the required variance-covariance matrix

of magnitudes u, v, w, ... is:
N=F MF . (64)

. 2 .
Let us consider values “;’A s Wiy, and Cw, 5 Cw, > for torsion balance measurements,

and uzo and pfm for known deflections of the vertical at astrogeodetic points as being

given. Errors of distances and azimuths in (30) and (31) computed from co-ordinates of
measurement points being negligible compared to errors of torsion balance measurements
(VOLGYESI 1975, 1976), hence applying those above to the sense:

2
n
2 _ | M2 .2 2 2 2 .
M7 —(—2g] [2s1n 20, Wy, +2c08" 20, puy +4sin2a, cos2a, cWA,WW]

2
n
2 _ | " -2 2 2 2 .
My, = [—j [28111 20055 My, +20087 2005 [y, + 4810 20,55 COS 2015, CWA,W.W]

2g

Nyly r . :
= 23U sin 20, sin 20y, b, +

C
Ty3.T3, (2g)2

c0S20L,;, €05 20,5, Wy, +8in(20,; +20.,,) Cor ]
Xy My

From those above, according to (44), (46), (50) and (51), applying notations in
(47):
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2 MTIZ
d, 2

Cos™ ay,
bod, — 0

. 2 2 2 2
up =[ cos® o,y py +cos’ oy py +2coso,cosay, ¢p g+
sin” oy, cos® 0Ly My +€0S” 0Ly COs” OLyy ) —

: 2 2
2sino;; oS0y, COS™ 0Ly € 4 ]Q

2 ) 2 ) 2 . .

K, =[ sin® a,, My, +sin” oy, py +2sinoysinay, ¢ o+
c 2 c 2 2 2 s .2 2
SIN” 0Ly, SIN” 0Ly; [, +€OS™ 0Ly SIN~ 0Ly [y —

. . 2 2
2sino;; €os0Ly,; SINT Oy €, 4 ]Q

_ . 2 . 2
Ch, d; =[ sina,, cosa,, M7, +SIn0L, COSOLy, Uy +
(cosaLy, sinaly, +8IN 0L, COSOLy ) Cp 7+
) . 2 2 : 2
SIN” 0Ly, SIN 0Ly, COSOLy; W, +COS™ Oy SINOL,; COSOLy; My

. . 2
251N 0L, COS Oy, SINOLy; COSOLy; Cp 4 lo

ultimately yielding:

2 2 2 2
Mgy =My HHy, Fet Wy e+

2 2 2 2
My =My HHy +ot iy 0, e

Thereby one main goal to obtain variances p;, ,and p;, needed for (56) has been

achieved.
At last, let us determine mean errors of values of deflections of the vertical obtained by
successive interpolation. Variance of parameter u from (54) or (55) is:

2 Méo +u3,
w n-l1 2
S
i=l1
or
2 H1210 +H§d

“ n—1 2
Z Ci
i=1
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depending on what data are known for determining u . According to (52) and (53), using
hitherto results:

Mi&m.f = aiz*'lui + “ZHI

Hiﬂm.i :CiZHH.Z +u‘21i+1

are variances of the differences of deflections of the vertical. In final account, mean errors
of the required components of the deflection of the vertical are:

i 2 2
Hzo +(Zakj Ho + Méb] (65)

I+

He =

k=1

i 2 2
Hrz]o +{chj T Pédil (66)

k=1

I
-+

“m

References

1. Badekas J., .I.LMueller: Interpolation of deflections from horizontal gravity gradients.
Reports of the Department of Geodetic Science, No. 98, The Ohio State University,
1967.

2. Detrekéi, A.: Adjustment computations*. University Lecture Notes. Technical

University of Budapest. Tankdnyvkiad6, Budapest, 1981.

. Detrekéi A.: Adjustment computations . Tankényvkiadé, Budapest, 1991.

Eo6tvos R.: Bestimmung der Gradienten der Schwerkraft und ihrer Niveauflaichen mit
Hilfe der Drehwaage. Verhandl. d. XV. allg. Konferenz der Internat. Erdmessung in
Budapest, 1906.

5. Eotvos R.: Bericht iiber geoddatische Arbeiten in Ungarn besonders tiber
Beobachtungen mit der Drehwaage. Vrehandl. d. XVI. allg. Konferenz der Internat.
Erdmessung in London-Cambridge, 1909.

6. Heineke U.: Untersuchungen zur Reduktion und geoddatischen Verwendung von
DrehwaagemefigroBen.  Wissenschaftliche Arbeiten der Lehrst\Svhle f\Svr
Geodédasie, Photogrammetrie und Kartographie an der Technischen Universit\%at
Hannover, No.86, 1978.

. Magnitzki W.A., W.W.Brovar: Theorie der Figure der Erde. Veb Verlag, Berlin, 1964.

8. Renner J.: Deflection of the vertical . MTA Miiszaki Tudomanyok Oszt. Kozl., V./1-2.,
1952.

9. Renner J.: Untersuchungen iiber Lotabweichungen. Acta Technica, XV./1-2., 37-75,
1956.

10. Renner J.: Further investigation about deflections of the vertical . MTA Miiszaki
Tudomanyok Oszt. Kozl., XXI./1-4., 99-113, 1957.

11. Selényi P.: Roland E6tvos Gesammelte Arbeiten. Akadémiai Kiadé, Budapest, 1953.

12. Takatsy M.: Interpolation of deflection of the vertical.... = Paper of TDK. Technical
University, Budapest, 1985.

13. Torge W.: Geodesy. Walter de Gruyter, Berlin New York, 1980.

‘-IAUJ

~

25



14. Volgyesi L.: Interpolation of deflection of the vertical based on curvature gradients of
gravity . Doctoral dissertation, Budapest, 1975.

. Volgyesi L.: Matrix-orthonormalization method in adjustment. Periodica Polytechnica
C.E., Vol.19. No.1-2., 175-185, Budapest 1975.

16. Volgyesi L.: Introduction of torsion balance measurements into determination of
components of deflection of the vertical . Research report, Department of Geodesy,
Technical University, Budapest, 1976.

17. Volgyesi L.: Interpolation deflection of the vertical based on torsion balance results.
Periodica Polytechnica C.E., Vol.21. No.1-2., 127-138, Budapest, 1977.

. Volgyesi L.: Interpolation of Deflection of the Vertical from Horizontal Gradients of
Gravity. Proceedings of the 3rd International Symposium on Geodesy and Physics of
the Earth, 561-567, Potsdam 1977.

19. Volgyesi L.: Interpolation of deflection of the vertical using torsion balance

measurements I'. Magyar Geofizika XVIIL. évf. 55.sz., 189-196, 1977.

20. Volgyesi L.: Interpolation of deflection of the vertical using torsion balance
measurements II". Magyar Geofizika XVIII. évf. 6.sz., 226-230, 1977.

21. Volgyesi L.: Interpolation of deflection of the vertical based on gradient
measurements . Publication of the Scientific Forum of Young Instructors and
Researchers, Technical University, Budapest, 1978.

22. Volgyesi L.: Some problems about the choice of the numerical methods, and the
application of the matrix orthogonalization method in adjustment’. Geodézia és
Kartografia, 327-334,1979.

23. Volgyesi L.: Practical application of the matrix orthogonalization method in
adjustment”. Geodézia és Kartogréfia, 7-15, 1980.

24. Volgyesi L.: Correction of torsion balance measurements used for interpolating the
deflection of the vertical. Periodica Polytechnica C.E., Vol.24. No.1-2., 199-210,
Budapest, 1980.

25. Volgyesi L.: Geophysics . University Lecture Notes. Technical University of
Budapest. Tank\5pnyvkiadd, Budapest, 1982.

1

9]

1

o0

* In Hungarian

Volgyesi L (1993): Interpolation of Deflection of the Vertical Based on Gravity Gradients.
Periodica Polytechnica Civ.Eng., Vol. 37, Nr. 2, pp. 137-166.

Dr. Lajos VOLGYESI, Department of Geodesy and Surveying, Budapest University
of Technology and Economics, H-1521 Budapest, Hungary, Miiegyetem rkp. 3.
Web: http://sci.fgt.bme.hu/volgyesi E-mail: volgyesi@eik.bme.hu

26




