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Abstract 
 

Significance of interpolation of deflection of the vertical by means of torsion 
balance measurements is pointed out, followed by outlining its fundamentals. Thereafter, 
its practical methods of solution will be presented. 
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Introduction 
 

Knowledge of deflection of the vertical is essential in geodesy, relating to 
positioning data measurable in Earth's real gravity field and those computable in some 
normal gravity field. At the same time, knowledge of deflections of the vertical offers an 
important possibility of the detailed geoid determination. For geoid determination, a dense 
net of values of deflection of the vertical is necessary. Astrogeodetic determination of 
deflection of the vertical is extremely expensive and tedious, therefore in practice a sparser 
net of astronomical stations has to be put up with and this astrogeodetic net is interpolated 
by different methods. 
Interpolating the values of deflection of the vertical may be made either by gravimetric 
interpolation methods involving gravity anomalies, or - with the knowledge of curvature 
gradients of potential surfaces of the gravity field - by using torsion balance measurements. 
From among the two methods, practical applicability of the former is rather restricted, 
adequate accuracy being conditioned by the availability of detailed gravity data around the 
point to be determined at a distance of min. 2000 km. Besides, the gravimetric 
interpolation method is excessively computation-intensive and difficult to be programmed. 

All these urge to consider the interpolation of deflection of the vertical based on 
torsion balance measurements. Under Hungarian conditions, in addition to gradient values   
Wzx and  Wzy  , also curvature data  Wxy and   W∆  =  Wyy - Wxx  are available with great 
precision. Since earlier torsion balance measurements were made mainly for geophysical 
prospecting, mostly only gravity gradients have been processed. Up to now, gravity 
curvature values essential in geodesy - rather promising for detailed determination of 
deflections of the vertical - have been left unprocessed.  

Loránd Eötvös was the first to point out that interpolation of deflection of the 
vertical is possible from torsion balance measurements, and made also relevant trial 
computations (EÖTVÖS 1906, 1909; SELÉNYI 1953). The method of Eötvös was further 
developed in a simplified form by János Renner (RENNER 1952, 1956, 1957), without 
having an opportunity to safely check the computations. Besides the two Hungarian 
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scientists above, only two members from the staff of the Columbus University USA: J. 
Badekas and I. Mueller (BADEKAS - MUELLER 1967), as well as U.Heineke in Hannover 
(HEINEKE 1978) had been concerned with the subject, - but even their works had still much 
to be cleared. 

After outlining the fundamentals of interpolation of deflection of the vertical 
relying on torsion balance measurements, possible practical computation methods will be 
presented. 

Actually, this seems to be the most economical method for interpolating deflections 
of the vertical, thereby for precise geoid determinations. 
 
 

1. Fundamentals of the interpolation method 
 

Let us consider distribution of deflections of the vertical in a small area of Earth's 
surface where torsion balance measurements are available. 

Let computations be referred to a Cartesian system, having an arbitrary point  P0  
within the examined area as origin. Let  +x and  +y  be the axes of the system point to the 
north and to the east, respectively, and let axis  z  coincide with vertical direction at  P0  so 
that its positive branch points downwards. Although these directions vary from point to 
point, at any point of a moderate area - of a size at most  0.5o ×  0.5o  the same coordinate 
directions may be taken to a fair approximation, namely the effect of deviation due to 
meridian convergence is within the range of reliability of observations  (SELÉNYI 1953). 
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Fig. 1 
 

Thereby, direction  z  at any point  Pi  of the concerned area is parallel to the  z-axis 
through point  P0 , and the direction  xi  to the tangent of astronomical meridian through 
point  P0 , as illustrated by the arbitrary point  Pi  (actually i=1) in Fig. 1. The  z-axis at 
point  P1  being parallel to the vertical at origin  P0 , presumably, direction of vector  g1  at 
point  P1  does not coincide with direction  z .  In  Fig.1., vector  VP1   is, in fact, projection 
of vector  1g   on plane  xz , while vector  HP1   is projection of component  1xg   of vector  
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1g   on the same plane. (There are negligible deviations between vectors  VP1   and  1g  , as 
well as  HP1   and  1xg ). 

Be  Φ  the astronomical latitude of point  P0 , and let  1∆Φ   symbolize the angle 
between direction  P1V  and  z  at point  P1 , so the astronomical latitude of point  P1  is: 

 
11 ∆Φ+Φ=Φ  

 
While, according to Fig.1: 
 
 111 sin∆Φ=− gg x  
 
it is to be written, for a small angle  1∆Φ  , as: 
 

 
1

1
1 g

g x−=∆Φ  (1) 

 
The same train of thought leads for the variation of astronomic longitude in plane  yz  to: 
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1
11 cos

g
g y=Φ∆Λ  (2) 

 
Equations (1) and (2) yield components  N  and  E  of the angle between geoid normal at 
points  P0  and  P1 . Values  2∆Φ   and  2∆Λ   for  P0  and some P2  may be determined in a 
similar way. These may be applied for writing differences between  P1  and  P2 : 
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where  W  is the potential of Earth's real gravity field, while  g~   and  Φ~   are the mean 
values of gravity, and astronomical latitude between points P1  and  P2 . By analogy with 
(1) and (2),  (3) and (4) yield components  N  and  E  of the angle included by level surface 
normal at P1  and  P2 . 

By introducing notations    xW
x

W
=

∂
∂     and     yW

y
W

=
∂
∂    ,  Eqs. (3) and (4) may 

be written as: 
 

 ( )1212 ~
1

xx WW
g

−−=∆Φ−∆Φ  (5) 

and, 
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 ( ) ( )1212 ~
1~cos yy WW
g

−−=Φ∆Λ−∆Λ  (6) 

 
respectively. 

Level surfaces of the potential of normal gravity field, normal gravity, and 
directions of normal gravity vectors, in this relation, geodetic latitude and longitude of any 
point, termed normal geodetic latitude  ϕn   and normal geodetic longitude  λn  , may be 
interpreted on the analogy of the Earth's real gravity field. 
Relationships similar to (5) and (6) may be written between the variation of the gravity 
field direction in normal gravity field, that is, of normal geodetic coordinates  ϕn   and  λn   
of points  P1  and  P2 , and the derivatives conform to potential of the normal gravity field 
(normal potential): 
 

 ( )1212 ~
1

xxnn UU −
γ

−=ϕ∆−ϕ∆  (7) 

and 

 ( ) ( )1212 ~
1~cos yynn UU −
γ

−=ϕλ∆−λ∆  (8) 

 
where  U  is the normal potential, and  γ~   is the mean value of normal gravity between 
points  P1  and  P2 . 
Inside a limited area of size  0.5o × 0.5o , approximations  g~~ =γ   and   ϕ=ϕ=Φ ~~~

n    are 
permissible - and so are single values  g~   and  ϕ~   valid for all the area rather than between 
two neighboring points alone (BADEKAS and MUELLER 1967), to be indicated simply by  g  
and  ϕ  . 

Let us subtract Eqs (5) and (7), as well as (6) and (8) from each other: 
 
 ( ) ( )[ ] ( ) ( )12121122 xxxxnn UUWWg −+−−=ϕ∆−∆Φ−ϕ∆−∆Φ  (9) 
 
 ( ) ( )[ ] ( ) ( )12121122 cos yyyynn UUWWg −+−−=ϕλ∆−∆Λ−λ∆−∆Λ  (10) 
 

By definition, differences (9) and (10) between astronomic and normal geodetic 
latitudes and longitudes yield differences of components  ξ   and  η   of deflection of the 
vertical between points P1  and  P2: 
 
 ( ) ( ) ( )121212 xxxx UUWWg −+−−=ξ−ξ  , (11) 
 
 ( ) ( ) ( )121212 yyyy UUWWg −+−−=η−η  . (11) 
 

Introducing notations 
 
 1212 ξ−ξ=ξ∆  , 

1212 η−η=η∆  
 
and 
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 UWW −=∆  (13) 
 
leads to equations: 
 
 1221 xx WWg ∆+∆−=ξ∆ ., (14 
 1221 yy WWg ∆+∆−=η∆  . (15 
 
Remind that in classic geodesy, deflection of the vertical is frequently interpreted as: 
 
 ϕ−Φ=ξ  
 ϕλ−Λ=η cos)(  
 
where  Φ  and  Λ  are astronomic co-ordinates, while  ϕ  and  λ  are geodetic (ellipsoidal) 
co-ordinates of point. 

By physically interpreting the ellipsoid, serving as reference surface, as one level 
surface of the normal gravity field, then ellipsoidal and normal geodetic co-ordinates are 
related as: 
 
 κ−ϕ=ϕ n  , (16) 
 λ=λ n  , (17) 
 
where  κ  is the difference of directions of the normal gravity field between point  P  on the 
earth surface and the ellipsoid surface along the normal plumb line at point  P . In (16) and 
(17), normal plumb line being a plane curve lying  in the normal meridian plane of point  P  
has been reckoned with. 

For an altitude  h  of point  P  over the ellipsoid, applying curvature of the plumb 
line of normal gravity field: 
 

 ϕ
β

=κ 2sin
R

h  (18) 

 
where  β  is the dynamical flattening of normal gravity field, and  R  is the Earth's radius 
(MAGNITZKI and BROVAR 1964). 

By differentiating (18), it is obvious that in the mentioned  0.5o ×  0.5o  area, 
variation of  κ  is practically negligible. Hence, (11) and (12) are also valid for the classical 
geodetic interpretation of deflection of the vertical. 

Thus, in the following, when interpreting of deflection of the vertical it is needless 
to distinguish between the two conceptions, permitting to use the concept of deflection of 
the vertical in both interpretations. 

Components of deflections of the vertical - more closely, their values multiplied by  
g , that is, horizontal components - seemed to be determined by first derivatives of the 
potential. While torsion balance measurements yield second derivatives 
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Thus, the computation problem is essentially an integration to be solved by approximation. 
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Fig. 2 
 

To this aim, first the co-ordinate transformation in  Fig.2  will be performed, 
according to matrix equation 
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while second derivatives are: 
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and 
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This latter      
sn

WWns ∂∂
∂

=
2

     seems to result from torsion balance measurements, with the 

knowledge of azimuth  12α   of the direction connecting the two points examined. 
Now, by integrating the left-hand side of (20)  between limits  n1  and  n2  : 
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If points  P1  and  P2  are close enough to let variation of second derivative  Wns  be 

considered as linear, then integral  (21) may be computed by trapezoid integral 
approximation formula: 
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where  1212 nnn −=   is the distance between points  P1  and  P2. 

On the other hand, by applying transformation (19), integral (21) yields: 
 
 ( ) ( ) 1212121212 cossin α−+α−−=− yyxxss WWWWWW   . (23) 
 

The same train of thought yields a similar expression for potential  U  of normal 
gravity field: 
 
 ( ) ( ) 1212121212 cossin α−+α−−=− yyxxss UUUUUU   . (24) 
 

Subtracting (23) from (24) yields variation  12∆Θ   of horizontal force component 
between points P1  and  P2  in direction  n . By taking (23) into consideration, and 
introducing notation 
 
 1212 Gg =∆Θ  (25) 
 
the following is yielded: 
 
 ( ) ( ) 1212121212 cossin α∆+∆−−α∆+∆−= yyxx WWWWG  
 
after substituting (14) and (15): 
 
 1221122112 cossin αη∆−αξ∆= ggG  
 
or by introducing notation 
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equation 
 
 1221122112 cossin αη∆−αξ∆=T  (26) 
 
is yielded. 
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The left-hand side of (26) may be computed by using (22). When using notation 
(13): 
 

 ( ) ( )[ ]
g

n
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with  nsW∆   to be computed from (20): 
 
 1212 2cos2sin α∆+α∆=∆ ∆ xyns WWW  (28) 
 
where    ∆∆∆ −=∆ UWW      and     xyxyxy UWW −=∆  .   Remind that  ∆W   and  xyW   are 
gradients obtainable from torsion balance measurements, while  ∆U   and  xyU   are 
gradients of the normal gravity field, referred to, e.g., the Hayford ellipsoid, in Eötvös 
units (HEINEKE 1978): 
 
 ϕ=∆

2cos26.10U  (29a) 
 0=xyU  (29b) 
 

Now, by substituting (28) into (27): 
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which, compared to (26) yields the basic equation wanted, relating the variation of 
components of deflection of the vertical between two points to gradients from torsion 
balance measurements: 
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This is a very important relationship between gradients from torsion balance 

measurements, and deflections of the vertical. 
Being given a third point  P3  forming a triangle with P1  and  P2 , leads to further two 
relationships 
 
 2332233223 cossin αη∆−αξ∆=T  (32) 
and 
 1331133113 cossin αη∆−αξ∆=T  (33) 
 
as in (26). 

Proceeding along the triangle formed by  P1 P2 and P3  variation of components of 
deflection of the vertical must be zero, permitting to write further two relationships in 
addition to the already deduced ones  (26),  (32)  and  (33) ; that is: 
 



 9

 0133221 =ξ∆+ξ∆+ξ∆  (34) 
and 
 0133221 =η∆+η∆+η∆  (35) 
 

Thus, for any single triangle, there are six unknowns:  133221 ,, ξ∆ξ∆ξ∆  , 

133221 ,, ξ∆ξ∆ξ∆  ;  for them five, mutually independent equations: (26), (32), (33), (34), 
(35). may be written. Unambiguous solution to the problem requires further information. 
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Fig. 3 

 
 

Now have a look at the interpolation chain of  n  points in  Fig.3.  The  n  points 
form a chain of  n-2  triangles with  2n-3  triangle sides, each having two unknown 
components of deflection of the vertical along sides - hence, for all of the network, there is 
a total of  4n-6  unknowns. While for the  n-2  triangles,  2n-3  equations of the (26) type, 
and  2n-4  ones  of the (34) and (35) types may be written, hence for the  4n-6  unknowns 
there are  4n-7  equations in all. For an unambiguous solution to the problem, a further 
information (equation) - independent of those above - is required. 

For instance, in case of a chain of interpolation seen in  Fig.3 ,  if values of 
components  nξξ ,1   or  nηη ,1   of deflections of the vertical at the two extreme points are 
known, it may be written 
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So that a total of  4n-6  equations may be written for the  4n-6  unknowns, permitting 
unambiguous determination of all unknown differences  ξ∆   and  η∆   between 
components of deflection of the vertical. 
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2. Practical Solution of Interpolation 
 

In those above, fundamentals of interpolation of deflection of the vertical applying 
torsion balance measurements were considered. Interpolation can be solved by means of 
various practical computation methods. Every practical solution relies on the fundamentals 
presented above, but the different computation methods are not equivalent - mainly as to 
reliability of their respective results. Let us have a look at the practically possible 
solutions. 

Practical solutions belong to two groups. In one variations, ξ∆   η∆   of 
components of deflection of the vertical are taken as unknowns, while the other group, 
components  ξ, η  of the deflection of the vertical at the points are the required unknowns. 
In the first case - when differences between the components of the deflection of the vertical 
between points are taken as unknowns - there are three possibilities of solution: 

- inverting the complete coefficient matrix assembled of coefficients of the  4n-6  
equations produced by applying  (26), (34), (35), (36), (37) type equations, that is, 
determining  4n-6  unknown values of differences  ξ∆   and  η∆   of deflection of the 
vertical, 

- taking the group of the coefficient matrix above referring only to the absolutely 
necessary  2n-2  unknowns into consideration, 

- determining unknowns   ξ∆   η∆   step by step (by successive elimination). 
 
 

2.1. Traditional Solution Method 
 
The solution method considered as traditional is due to Loránd Eötvös  (EÖTVÖS 1906, 
1909;  SELÉNYI 1953). In this method, in the interpolation nets, the differences of 
deflections of the vertical between neighboring points are considered as unknowns, writing 
for the unknowns  ξ∆   and  η∆   equations of types (26), (34), (35); as well as (36), or 
(37). Now, for arbitrary interpolation net (or chain) of  n  points,  4n-6  unknown values of 
differences  ξ∆   and  η∆   of the deflections of the vertical are to be determined. In the 
preceding item, it was shown that for an unambiguous determination of unknown values  
ξ∆   and  η∆  , the same components of deflections of the vertical hence either  ξ or η  

values at two arbitrary points of the interpolation net (possibly, at end points) are needed. 
Since in most of the cases, it is not sufficient to know differences  ξ∆  , η∆   between 
neighboring points, but the very  ξ, η  values at every point are needed, it is insufficient to 
know one component of the deflection of the vertical at two points of the net, but also the 
value of the other component at some point should be known. In other words, if the very  
ξ, η  values at points of the interpolation net are to be determined, then, in addition to 
torsion balance measurements, two known (astrogeodetic) points are needed, with the 
knowledge of both  ξ  and  η  values in one of them, and either the  ξ  or the  η  value in 
the other. Practically, both  ξ  and  η  values in the two known astrogeodetic points are 
available, thus, there is an excess of data, the problem is redundant. In this case, the most 
probable value of the unknowns is determined by adjustment. 

In practice, solution to the adjustment problem is made by  
using the least squares method. 
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2.2. Reducing the Number of Unknowns  ξ∆  , η∆  
 
Computing interpolation chains by the method in item  2.1  involves much of needless 
excess work, a drawback both for accuracy and economy of the method. In case of the 
conventional computation method, excess work consists in inverting, for a chain of  n  
points, all coefficient matrices  belonging to the  4n-6  unknowns, - although for an 
unambiguous solution to the problem only  2n-2  unknowns are needed. For a high  n  
value, this may significantly reduce accuracy of the interpolated  ξ∆  , η∆   values. 

To reduce the number of unknowns, let us compose the system of  4n-6  unknowns 
into two groups. One of the groups contains only the necessary unknowns (for instance, for 
the chain in  Fig.3, only the  ξ∆  , η∆   values for sides  P1P2 , P2P3 , P3P4 , P4P5 , … the 
other group will contain the needless unknowns (e.g.  ξ∆  , η∆   for the remaining sides 
P1P3 , P2P4 , P3P5 , ... ). The other group of unknowns is omitted in the following, and only 
coefficient matrix of the system  constructed of equations for the needed unknowns is to be 
inverted. This latter is merely of size  (2n-2) × (2n-2), hence much less than that of size 
(4n-6) × (4n-6)  in the conventional case. 

Now let us see what necessary equations are sufficient to be written. 
Let us consider  Fig.3 again! Equations (26), (32), (33) yield for the first triangle  (P1P2P3), 
eliminating unknowns  31ξ∆   and  31η∆  : 
 
 1212211221 cossin T=αη∆−αξ∆  (38) 
 2323322332 cossin T=αη∆−αξ∆  (39) 
 313132313231213121 cossincossin T=αη∆+αξ∆−αη∆−αξ∆  (40) 
 
while for each of the other triangles further two equations result: 
 
 2,12,11,22,11,2 cossin ++++++++++ =αη∆−αξ∆ iiiiiiiiii T  (41) 
and 

 
iiiiiiiiii

iiiiiiii

T ,2,21,2,21,2

,2,1,2,1

cossin

cossin

+++++++

++++

=αη∆+αξ∆

−αη∆−αξ∆
 (42) 

 
where   i = 2, 3, 4, ... , n-2 . 

These make up  2n-3  equations with  2n-2 unknowns  ξ∆   and  η∆  .  For an 
unambiguous solution to the problem, in conformity with our previous statements, further 
information (equation) is needed to obtain from (known) deflections of the vertical at 
points of the interpolation net. Provided  1ξ  , 1η   and  nξ  , nη   values are given at two 
arbitrary points of the interpolation chain (possibly at end points), then, in addition to (38), 
(39), (40), as well as (41), and (42), also conditional equations  (36), (37) may be written, 
and the most probable values of unknowns  ξ∆  , η∆   may be determined (by adjustment). 
 
 

2.3. Interpolation by Successive Elimination 
 

Determining unknowns  ξ∆  , η∆   by successive elimination rather than by 
inverting coefficient matrix of the unknowns offers practical advantages. 
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To present essentials of the step-wise determination, let us consider again the 
interpolation chain in  Fig.3. Irrelevant unknowns (components  ξ∆  , η∆   of deflection of 
the vertical for sides  P1P3 , P2P4 , P3P5 , P4P6 , ...) will be omitted, only those for sides  
P1P2 , P2P3 , P3P4 , P4P5 , … are to be determined. 

Let us determine first the unknowns for the first side  P1P2  of triangle  P1P2P3 ,  
starting from the trivial relationship: 
 
 1121 buau +==ξ∆  (43) 
where 
 11 =a       and      01 =b  (44) 
 

By writing equation (43) into (26), and expressing the  12η∆   value: 
 

 
12

12121

12

121
12 cos

sin
cos

sin
α
−α

+
α
α

=η∆
Tbua  

 
or concisely: 
 
 1121 ducu +==η∆  (45) 
 
where 
 

 
12

121
1 cos

sin
α
α

=
ac  

 
and 
 

 
12

12121
1 cos

sin
α
−α

=
Tb

d  (46) 

 
Let us determine further unknowns for the next  P2P3  side of triangle  P1P2P3 . By 
eliminating unknowns  31ξ∆   and  31η∆   from (26), (32), (33), (34) and (35) for triangle  
P1P2P3  and introducing notation: 
 
 ( ) 1

23313132 cossincossin −αα−αα=Q  (47) 
 
yields for unknowns  32ξ∆   and  32η∆ : 
 
 ( )QTT 2331212331212331312332 coscoscossincoscos ααη∆−ααξ∆+α+α=ξ∆  
and 
 ( )QTT 2331212331212331312332 sincossinsinsinsin ααη∆−ααξ∆+α+α=η∆  
 
Substituting (43) and (45) : 
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( )[

]QdbTT
uca

233112331123313123

233112331132

coscoscossinsinsin
coscoscossin

αα−αα++α
+αα−αα=ξ∆

 

and 

 
( )[

]QdbTT
uca

233112331123313123

233112331132

sincossinsincoscos
coscoscossin

αα−αα++α
+αα−αα=η∆

 

 
or, with other notations: 
 
 2232 bua +=ξ∆  (48) 
 2232 duc +=η∆  (49) 
 
where 
 
 ( )Qcaa 23311233112 coscoscossin αα−αα=  
 ( )QTTdbb 2331312323311233112 coscoscoscoscossin α+α+αα−αα=  (50) 
 
 ( )Qcac 23311233112 sincossinsin αα−αα=  
 ( )QTTdbd 2331312323311233112 sinsinsincossinsin α+α+αα−αα=  (51) 
 
Coefficients  ai  and  ci  seem to depend exclusively on the net geometry, while coefficients  
bi  and  di  on the net geometry and on the second potential derivatives depending on the 
gradient of the level surface. 

Eqs (43), (45), (48) and (49) may be written in turn for all triangles of the chain in  
Fig.3.  In general, for the  i-th  triangle: 
 
 111,2 ++++ +=ξ∆ iiii bua  (52) 
 111,2 ++++ +=η∆ iiii duc  (53) 
 
leading to a single-parameter system of equations where all unknowns are functions of 
parameter  u . 

Like before, to determine parameter  u , also here further information is required. 
Provided that the values of components  ξ  and  η  of deflection of the vertical at two 
extreme points of the net are known, it may be written: 
 

 ∑∑
−

=

−

=

+=ξ∆
1

1

1

1
1

n

i
i

n

i
in bua  (54) 

and 

 ∑∑
−

=

−

=

+=η∆
1

1

1

1
1

n

i
i

n

i
in duc   . (55) 

 
Value of parameter  u  may be determined from either (54) or (55). Substituting this  

u  value into  (52) and (53) permits to easily determine unknown  ξ∆  , η∆   values of 
differences of deflection of the vertical between all necessary pairs of points. 
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Simultaneously, by writing (54) and (55), the most probable  u  value will be 
obtained by adjustment. To this aim, e.g. the Badekas & Mueller adjustment model suits 
due to its simplicity (BADEKAS and MUELLER 1967). 

In conformity with the principle of this adjustment model,  li  and  xi  values with  
 
 0),( =ii xlf  
 
 
are to be found, where  li  and  xi  are the adjusted values of observed magnitudes, and of 
the required parameters, respectively. By expanding function  f  and keeping only first-
order terms, 
 

 0),( 00 =δ
∂
∂

+
∂
∂

+ i
i

i
i

ii x
x
fv

l
fxlf  

 
where  vi  are the corrections of observed magnitudes  l0i , while  ixδ   the variations of 
preliminary values  x0i ;  that is: 
 
 iii vll += 0  
 iii xxx δ+= 0  
 

In matrix form: 
 
 0AxLvF =++  
 
where: 
 

 [ ]),( 00 ii xlf=F    ,       







∂
∂

=
il

fL        and       







∂
∂

=
ix

fA  

 
With this model applied to the problem - that is, to (54) and (55): 

 

 



















=
∑

∑
−

=

−

=
1

1

1

1
n

i
i

n

i
i

c

a
A     ,         








=

10
01

L  

 

 



















η−

ξ−
=
∑

∑
−

=

−

=
1

1
1

1

1

1
n

i
ni

n

n

i
i

d

b
F  

 
 
zeroing the preliminary  x0i  value ( here x0i = u ). By denoting variances of  Σb  and  Σd  
by  2

bΣµ   and  2
dΣµ  ,  weight matrix  P , and its inverted  P-1  become: 
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

















µ

µ=

Σ

Σ

2

2

10

01

d

bP     ,          








µ
µ

=
Σ

Σ−
2

2
1

0
0

d

bP   . 

 
Let us form now matrix product    LPLS 1* −=     ( L*  being transposed of   L ) , 

then its inverted    S-1 : 
 










µ
µ

=
Σ

Σ
2

2

0
0

d

bS     ,          



















µ

µ=

Σ

Σ−

2

2

10

01

d

b1S   . 

 
With the above notations, the solution in general form is: 
 
 FSAASA 1*1* −−−−= 1)(x   , 
 
in the actual case: 
 

 
2

21

1

2
21

1

1

1

2
1

1
1

1

1

2
1

1

1

b

n

i
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i
i
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i
idn
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i
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Σ

−

=
Σ

−

=

−

=
Σ

−

=

−

=
Σ

−

=

µ



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


+µ









µ







η−+µ








ξ−

=

∑∑

∑ ∑∑∑
 

 
or by denoting solutions of (54) and (55) by  ξu   and  ηu  , respectively: 
 

 
2
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1

2
21

1

2
21

1

2
21

1

b

n

i
id

n

i
i

b

n

i
id

n

i
i

ca
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Σ

−

=
Σ

−

=

ηΣ

−

=
ξΣ

−

=

µ







+µ









µ







+µ









=

∑∑

∑∑
 (56) 

 
Resubstituting this  u  value into (54) and (55),  ξ  and  η  values computed with 

values of   Σa , Σb , Σc , Σd   will generally deviate from the difference of components of 
deflection of the vertical given between extreme points. The resulting misclosures are 
considered with opposite signs as corrections and distributed between terms of the given 
sums   Σb   and   Σd,  according to their variances,- where covariances of terms  bi  and  di  
are assumed to be negligible. 
 
 

2.4. Direct Computation of Components  ξ ,  η 
 

The practical solutions above are more or less advantageous to be applied to 
interpolation chains (e.g. that in  Fig.3 ) with known values of deflection of the vertical at 
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the beginning and end points. Application of the same solution methods may involve 
unpredictable computational difficulties if interpolation is not made along a chain but for 
points of an arbitrary, extensive triangulation network. Although writing intermediary 
equations of the (26), (32), (33) type represents no problem, but it is rather intricate to 
generate constraining condition equations (34), (35) by a computer. If moreover, the net 
includes more than two astrogeodetic points with given  ξ, η  values, then computer 
generation of the constraining condition equations is rather problematic; during processing, 
the computer program may get into an infinite cycle. To clear and solve similar problems, 
graph theory considerations are needed (TAKÁTSY, 1985). 

All these difficulties may be overcome by considering  ξ, η  values of deflection of 
the vertical at the point as unknowns in interpolating rather than differences  ∆ξ, ∆η  
between the points. Accordingly, let us transform (26) -type relationships by substituting: 
 

jiij ξ−ξ=ξ∆  

jiij η−η=η∆  
 
to 
 
 ijiijiijjijjijT αη−αξ−αη+αξ= cossincossin   . (57) 
 
This significantly reduces the number of unknowns, namely, there will be two unknowns 
for each point rather than per side. (In an arbitrary network, there are much less of points 
than of sides, since according to the classic principle of triangulation, every new point 
joins the existing network by two sides. For a homogeneous triangulation network, the   
side/point  ratio may be higher than two.) Another of its advantages is that there is no 
requirement for writing constraining conditions (34), (35) for the triangles, they being 
contained in the established observation equations. For an interpolation net with  m  
astrogeodetic points with known values of deflection of the vertical, with the relevant 
constraints the number of unknowns may be further reduced, with an additional size 
reduction of the normal equations matrix. 

Let us see now, how to solve interpolation for an arbitrary network with more of 
astrogeodetic points than needed for an unambiguous solution, where components of 
deflection of the vertical are known, and the  ξ, η  values are determined by adjustment. 
Relation between torsion balance measurements  ∆W   and  xyW   and unknown  ξ, η  values 
of the deflection of the vertical is obtained from (57): 
 

 ( ) ( )( ) ( ) ( )( )[ ]ijjxyxyixyxyijji
ij

ij UWUWUWUW
g

n
T α−+−+α−+−= ∆∆∆∆ 2cos2sin

4
 

 (58) 
 
where  ∆U   and  xyU   being normal values of gradients. The question arises what data are 
to be considered as measurement results for adjustment: the real torsion balance 
measurements  ∆W   and  xyW  , or  ijT   values from (58). Since no simple functional 
relationship (observation equation) with a measurement result on one side, and unknowns 
on the other side of an equation can be written, computation ought to be made under 
conditions of adjustment of direct measurements, rather than with measured unknowns 
(according to adjustment group V) - this is, however, excessively demanding for 
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computation, requiring excessive storage capacity. Hence concerning measurements, two 
approximations will be applied: on the one hand, components of deflection of the vertical 
measured at astrogeodetic points are left uncorrected - thus, they are input to adjustment as 
constraints,- on the other hand, magnitudes  ijT   on the left hand side of fundamental 
equation (57) are considered as fictitious measurements and corrected. Thereby 
observation equation (57) becomes: 
 
 ijiijiijjijjijij vT αη−αξ−αη+αξ=+ cossincossin  (59) 
 
permitting computation under conditions given by adjusting indirect measurements 
between unknowns (adjustment group IV). 

The first approximation is possible since reliability of the components of deflection 
of the vertical determined from astrogeodetic measurements exceeds that of the 
interpolated values considerably (a principle applied also to geodetic basic networks). 
Validity of the second approximation will be reconsidered in connection with the problem 
of weighting. 

For every triangle side of the interpolated net, observation equation relying on (59): 
 
 ijijiijiijjijjij Tv −αη−αξ−αη+αξ= cossincossin  (60) 
 
may be written. In matrix form: 
 

 lxAv
)1,()1,2()2,()1,( mnnmm +=
 

 
where  A  is the coefficient matrix of observation equations, x  is the vector containing 
unknowns  ξ  and  η , l  is the vector of constant terms;  m  is the number of sides in the 
interpolation net; and  n  is the number of points. Non-zero terms in an arbitrary row  i  of 
matrix  A  are: 
 
 [ ]...cossincossin... ijijijij α−α−αα  (61) 
 
while vector elements of constant term  l  are the  ijT   values. 

Constraint values of deflection of the vertical fixed at astrogeodetic points modify 
the structure of observation equations. Be 
 

 ,givenkck =ξ=ξ     k = 1, 2, … , m1  
 ,givenkck =η=η     k = 1, 2, … , m2  

 
given values of deflection of the vertical. Substituting them into observation equations (60) 
reduces the number of unknowns, modifying coefficient matrix   A   and constant term 
vector   l   of observation equations. If, for instance, in (59),   ,givenici =ξ=ξ    then the 
corresponding row (61) of matrix   A   is: 
 
 [ ]...cos...cossin... ijijij α−αα  
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the changed constant term being:    ijicijT αξ+ sin  ;   that is columns of  iξ  , and of 
coefficients of  iξ   are missing from vector   x ,  and matrix   A ,  respectively, while 
corresponding terms of constant term vector   l  are changed by a value    ijic αξ sin  . In an 
interpolation net, at certain points,  ξ  values, at other points  η  values may be given. 
However, at the same astrogeodetic point, both  ξ  and  η  values are usually known. In this 
case, coefficient matrix   A ,  vector   x ,  and constant term vector   l   of observation 
equations are further modified , as described above. 
Adjustment raises also the problem of weighting. Earlier the approximation comprised - 
rather than direct torsion balance measurements - starting from fictive measurements 
produced from them. Fictive measurements may only be applied, however, if certain 
conditions are met. The most important condition is the deducibility of covariance matrix 
of fictive measurements from the law of error propagation, requiring, however, a relation 
yielding fictive measurement results, - in the actual case, Eq. (58). Among quantities on 
the right-hand side of (58), torsion balance measurements  ∆W   and  xyW   may be 
considered as wrong. They are about equally reliable  ( E1± ), furthermore, they may be 
considered as mutually independent quantities, thus, their weighting coefficient matrix   

WWQ    will be a unit matrix. With the knowledge of   WWQ  ,  weighting coefficient matrix   

TTQ    of fictive measurements  T  (after DETREKŐI 1991) is: 
 
 FFFQFQ *

WW
*

TT ==  
 

EQ WW =    being a unit matrix. Elements of an arbitrary row  i  of matrix   *F    are: 
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For the following considerations let us produce rows   *

1f    and   *f2    of matrix   *F    
(referring to sides between points   21 PP −    and   31 PP −    respectively): 
 
 ( )[ ],0,...,0,0,2cos,2cos,0,...,0,02sin,2sin 1212,121212 αααα= kn*

1f  
and 
 ( )[ ],0,...,0,0,2cos,0,2cos,0,...,0,02sin,0,2sin 1313,1313132 αααα= kn*f  
 
where   gk 4/1=    is constant. Using   *

1f  ,  variance of  T  value referring to side   21 PP −    
is: 
 ( ) 2

12
2

12
2

12
222

12
2 22cos22sin2 nkknm =α+α=  

 
while   *

1f    and     *f2    yield covariance of  T  values for sides   21 PP −    and   31 PP −  : 
 
 ( )13121312

2
1312 2cos2cos2sin2sincov αα+αα= knn   . 

 
Thus, fictive measurements may be stated to be correlated, and the weighting coefficient 
matrix contains covariance elements at the junction point of the two sides. If needed, the 
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weighting matrix may be produced by inverting this weighting coefficient matrix. 
Practically, however, two approximations are possible: either fictive measurements  T  are 
considered to be mutually independent, so weighting matrix is a diagonal matrix; or fictive 
measurements are weighted in inverted quadratic relation to the distance. 

By assuming independent measurements, the second approximation results also 
from inversion, since terms in the main diagonal of the weighting coefficient matrix are 
proportional to the square of the side lengths. The neglection is, however, justified, in 
addition to the simplification of computation, also by the fact that contradictions are due 
less to measurement errors than to functional errors of the computational model (to be 
discussed later). 
 
 

2.5. Interpolation for Corner Points of a Square Net 
 

This interpolation method for an extensive area, developed by János Renner 
(RENNER 1952, 1956, 1957) also requires inversion of all the coefficient matrix. 
The gist of Renner's method is to determine values of deflection of the vertical at corner 
points of an arbitrary square net rather than at torsion balance measurement points. To this 
aim, the considered area is covered by a square net with 1 to 2 km side length, of  N-S  and  
E-W  lines, and the needed values of gradients  ∆W   and  xyW   are interpolated for the 
resulting corner points relying on known torsion balance measurements. 

Any inner point of the square net is surrounded by eight neighboring points as seen 
in  Fig.4 , forming eight rectangular triangles giving rise to rather simple relationships for 
components  ξ∆  , η∆   of deflection of the vertical at the mid-point. 
 

7  
 

Fig. 4 
 

Writing these equations for every point of the square net, each relationship for 
differences  ξ∆  , η∆   occurs twice, hence, instead of eight equations per point there are 
four mutually independent equations. 
In his test computations, Renner considered the  ξ∆  , η∆   values as unknowns, but it is 
more convenient to take the  ξ, η  values themselves as unknowns. Now, for eight points   

92 PP ÷    surrounding an arbitrary point of the interpolation net (e.g.  1P   in  Fig.4), the 
following rather simple equations may be written: 
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 1212 η−η=T  
 1133132 η−ξ−η+ξ=T  
 1414 ξ−ξ=T  
 1155152 η+ξ−η−ξ=T  
 1616 η+η−=T  

 1177172 η+ξ+η−ξ−=T  
 1818 ξ+ξ−=T  

 1199192 η−ξ+η+ξ−=T  
 
Similarly, also  ijT   values on the left-hand side of the equations are simple to compute, 
namely, values of trigonometrical functions in  ijT   cannot be other than  0  or  1 . For any 
interpolation net of arbitrary size, only these eight relationships may be written, except in 
the surrounding of astrogeodetic points including constraining values  ξ, η , due to their 
junction. 
 
 

2. 6. Application of the Matrix Orthogonalization Method 
 

In any practical solution other than the method of successive elimination, in 
applying the conventional adjustment procedure, difficulties in inverting a rather large-size 
matrix may emerge. There are essentially two ways of adjustment in some problem: either 
by the usual method of establishing and solving normal equations, or directly, by the 
matrix orthogonalization method. 

Solution of certain adjustment problems by the usual method - establishing and 
inverting normal equations - fails a result of expected accuracy, because e.g. the coefficient 
matrix of the arising normal equations is poorly conditioned. So practical solution to 
adjustment problems is advisably done by the matrix orthogonalization method, avoiding 
to establish normal equations, and the required, numerically more stable solution is directly 
obtained by applying proper matrix transformations (VÖLGYESI 1975, 1979, 1980). 

The quite simple principle of the matrix orthogonalization adjustment method is 
illustrated by the hypermatrix transformation, 
 

 

A

E
(n,1)(n,r)

(r,r) (r,1)

W

G

v

x

l
(n,r) (n,1)

(r,r) (r,1)

-1

 
)62(

 

where   A  is the coefficient matrix of observation equations, l  is the vector of constant 
terms, E  is a unit matrix,   O is a zero vector,  W  is a matrix with orthonormal columns, 
and  1G−   is an upper triangular matrix. 

To interpret algorithm of transformation (62), let us introduce notations:   ia    is 
the column  i  of matrix   A ;  iw    is the column  i  of matrix   W ; ei  is the column  i  of 
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matrix   E ;   and  gi  is the column  i  of matrix   G-1 . With these notations, matrix 
transformation (62) comprises the following steps: 
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then: 
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where   

E1a   and   
E

*
iw   are Euclidean norms of column, vectors  1a  , and  *

iw  , 

respectively, while   ( )ki wa ,    and   ( )kwl,    are scalar products of column vectors   ia    
and   kw  ,  and of vectors   l   and   kw ,  respectively. 
Matrix transformation (62) directly yields the wanted unknowns  xi  and corrections  vi  in 
place of vector  x  and  v  respectively (VÖLGYESI 1979, 1980). 

Variances and covariances of unknowns  xi  are comprised in weight coefficient 
matrix 
 
 *)( 11

(x) GGQ −−=  (63) 
 
where   *)( 1G−    is transposed of  1G−  . 
 
 

3.The Reliability of Interpolation 
 

Different practical solution methods of interpolation do not yield equally reliable 
values of deflection of the vertical. There are several possibilities to describe reliability, to 
determine mean errors of interpolated values. 

The simplest method yielding the most realistic information on reliability is direct 
comparison of interpolated values to known values of deflection of the vertical. This is 
feasible if there is a relatively dense net of astrogeodetic points, and some astrogeodetic 
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points within the interpolation net may be handled as unknown (control) points, where 
interpolated values of deflection of the vertical may be directly compared to astrogeodetic 
values. There is another, again simple possibility to check reliability of interpolation 
methods by creating different interpolation nets (chains) joining at common net points. 
Interpolated values should be more or less equal at identical points of different nets - 
obviously, the rate of deviations is characteristic of the reliability of interpolation. 

If there is no possibility to directly check interpolated values, then reliability of the 
interpolated values may also be determined by mathematical methods, relying on laws of 
error propagation. 

In applying the conventional adjustment method, mean errors of the interpolated 
values of deflection of the vertical may be determined by the method known from the 
variance-covariance matrix 
 
 (x)(x) QM 2

0µ=  
 
where  2

0µ   is the standard error of unit weight, while   (x)Q   is the weighting coefficient 
matrix of unknown deflections of the vertical (DETREKŐI 1991). Matrix   (x)Q   is either 

simply the inverse   1N−   of the coefficient matrix of normal equations, or, in more 
complex cases, it is simple to compute by using   1N− . 
Reliability indices of interpolated values of deflections of the vertical can also be simply 
obtained by making the computation by the matrix orthogonalization method. In this case, 
weighting coefficient  matrix   (x)Q   of interpolated deflections of the vertical may be 
computed according to (63). 

Compared to the case above, a more detailed consideration will be given to 
reliability indices of results obtained by the successive elimination method. Here, too, our 
essential problem is to deduce the reliability of interpolated deflections of the vertical from 
reliability indices of starting data. Our examinations apply the general law of error 
propagation. Let multivariate functions: 
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be given, just as: 
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where  2

iµ   is the variance (mean square error) of variable  i , and  ijc   is the covariance of 
independent variables  i and  j : 
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 jiijij rc µµ=  
 

ijr   is the correlation coefficient between variables  i  and  j . Applying notation 
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( *F  is transposed of  F ), the required variance-covariance matrix 
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of magnitudes  u, v, w, ... is: 
 
 MFFN *=   . (64) 
 
Let us consider values   2

∆
µW  , 2

xyWµ   and   
∆Wc  , 

xyWc  ,  for torsion balance measurements, 

and  2
0ξ

µ   and  2
0η

µ   for known deflections of the vertical at astrogeodetic points as being 
given. Errors of distances and azimuths in (30) and (31) computed from co-ordinates of 
measurement points being negligible compared to errors of torsion balance measurements 
(VÖLGYESI 1975, 1976), hence applying those above to the sense: 
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From those above, according to (44), (46), (50) and (51), applying notations in 
(47): 
 



 24

 02
1
=µb  

 
12

2

2
2

cos
12

1 α

µ
=µ T

d  

 
 0

11 , =dbc  
 

 

[

] 2
,23

2
3131

2
23

2
31

22
23

2
31

2

,3123
2

31
22

23
22

11

11

312323312

coscossin2

coscoscossin

coscos2coscos

Qc

c

db

db

TTTTb

ααα

−µαα+µαα

+αα+µα+µα=µ

 

 

 

[

] 2
,23

2
3131

2
23

2
31

22
23

2
31

2

,3123
2

31
22

23
22

11

11

312323312

sincossin2

sincossinsin

sinsin2sinsin

Qc

c

db

db

TTTTd

ααα

−µαα+µαα

+αα+µα+µα=µ

 

 

 

[

] 2
,23233131

2
232331

22
232331

2

,31313132

2
3131

2
2323,

11

11

3123

233122

cossincossin2

cossincoscossinsin

)cossinsin(cos

cossincossin

Qc

c

c

db

db

TT

TTdb

αααα

−µααα+µααα

+αα+αα

+µαα+µαα=

 

 .  .  . 
 
ultimately yielding: 
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Thereby one main goal to obtain variances   2

bΣµ    , and   2
dΣµ    needed for (56) has been 

achieved. 
At last, let us determine mean errors of values of deflections of the vertical obtained by 
successive interpolation. Variance of parameter  u  from (54) or (55) is: 
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depending on what data are known for determining  u . According to (52) and (53), using 
hitherto results: 
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are variances of the differences of deflections of the vertical. In final account, mean errors 
of the required components of the deflection of the vertical are: 
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