
Application of adjustment via Mathematica for de-
flection of the vertical determination

L. Völgyesi
Department of Geodesy and Surveying
Gy. Popper
Department of Structural Mechanics, Research Group for HAS-BUTE Computational Structural Mechanics
B. Paláncz
Department of Photogrammetry and Geoinformatics
Budapest University of Technology and Economics, H-1521 Budapest, Hungary, Müegyetem rkp. 3.

Abstract. In majority of real adjustment problems,
the observation equations to be solved in least
square sense, have more hundreds or thousands
variables, the matrix of the system is sparse and
often ill-conditioned. In this case study, the
application of integrated, symbolic-numeric system,
Mathematica to solve a practical adjustment prob-
lem for deflection of the vertical determination is
demonstrated. Solving a real world adjustment
problem, represented by more thousands variables
and equations, with very high sparseness of the
system matrix, we illustrate, how easy for
practitioners to create and handle sparse matrices
economically, compute condition numbers,
pseudoinverse and carry out singular value
decomposition and solve least square problems with
Mathematica within seconds.

Keywords. Adjustment via Mathematica, sparse
matrices, singular value decomposition, pseudoin-
verse solution, deflection of the vertical determina-
tion.

Introduction

It is necessary to treat large sparse matrices which
may be ill conditioned depending on the geometry
of interpolation network in the case of deflection of
the vertical’s determination based on torsion bal-
ance measurements Völgyesi (1993, 1995, 2001),
Tóth, Völgyesi (2002).

However, MATLAB has also advanced numeric
methods for sparse matrices, the authors select
Mathematica, because of its functional program-
ming ability and perfect interactivity make it ideal
for engineers without professional programming
knowledge. The interested readers can found a
comparison of numeric performances of different
mathematical programs for data analysis in Stein-

haus (2002) as well as a very good introduction to
Mathematica in Ruskeepaa (2004).

1 Mathematical background

Consider the system of linear algebraic equations

bAx = (1)

where A is a real m x n matrix, m >n and b is a real
vector of m elements. If m > n, then the equation (1)
is overdetermined and in general its solution does
not exist. In similar cases it is advantageous gener-
alize the concept of solution. The vector x of n
elements, which minimizes the Euclidian norm of
the error-vector Axb − , i.e.

min)()(
2/1
=−−≡− AxbAxbAxb T

E
 (2)

is called the least-squares solution of equation (1).
If the rank of A is smaller than n, then the minimiz-
ing problem (2) has not unique solution. The solu-
tion can be made unique if from among all solutions
of problem (2) we select that vector ∗x which
Euclidian norm is minimal, i.e. min=∗

E
x holds.

This unique least-squares solution of equation (1)
can be computed using the formula

bAx +∗ =

where +A is the generalized- (or Moore-Penrose-)
inverse of A . In Mathematica +A is implemented
using the function Pseudoinverse.

The problem (2) is equivalent to solving so-called
normal equations

bAAxA TT = .

The solution of a least-squares problem directly
from the normal equations is rather susceptible to
roundoff error.

The most powerful method for computing the
generalized- (or Moore-Penrose-) inverse and con-
sequently for least-squares solution of equation (1)
too, is based on the singular value decomposition or
SVD of matrix A.

The SVD methods are based on the following
theorem: any real m x n matrix A, nm ≥ can be
decomposed as

TVUΣA =

where r
TT IVVUU == , rσσ ,...,1=Σ is di-

agonal matrix, 0...21 >≥≥≥ rσσσ and r is the
rank of A .

The r columns of U are the orthonormal eigen-
vectors of TAA corresponding to its r largest ei-
genvalues. The r columns of V are the orthonormal
eigenvectors of AAT corresponding to its r largest
eigenvalues. The diagonal elements of Σ are
square roots of the r largest eigenvalues of AAT
and are called singular values of A.

In Mathematica the SVD is implemented using
the function SingularValues.

Using the SVD factorization, the +A general-
ized- (or Moore-Penrose-) inverse of A can be eas-
ily computed as follows:

TVUΣA = ,

rσσ /1,...,/1 1=−1Σ ,

T1UVΣA −+ = .

The linear least-squares problem becomes more
strongly ill-conditioned as the spectral condition
number

1/)(1 ≥= nScond σσA

increases.

2 Data preparation

Computations of deflections of the vertical were
performed in a test area in Hungary extending over
some 3000 2km where torsion balance measure-
ments and astrogeodetic data are available.

A simple relationship, based on potential theory,
can be written for the changes of ikξ∆ and ikη∆
between arbitrary points i and k of the deflection
of the vertical components ξ and η as well as for
curvature values xxyy WWW −=∆ and xyW2

measured by a torsion balance (Völgyesi 1993,
1995):

() ()[]{

() ()[] }kikxyxyixyxy

kiki
ik

kiikiikikkik

kiikkiik

UWUW

UWUW
g

s

α

α

αηαξαηαξ
αηαξ

2cos2

2sin
4

cossincossin
cossin

−+−+

−+−

=−−+
=∆+∆

∆∆∆∆

(3)

where iks is the distance between points i and k ,
g is the average value of gravity between them,

xxyy UUU −=∆ and xyU are curvature values of

the normal (reference) gravity field, whereas kiα is
the azimuth between the two points.
The computation being fundamentally integration,
practically possible only by approximation; in de-
riving (3) it had to be assumed that the change of
gravity gradients between points i and k, measur-
able by torsion balance, is linear (Völgyesi 1993).
This means Eq. (3) results a large sparse linear
system.

In order to illustrate the solution methods sup-
ported by Mathematica, first we show how to create
a spare matrix object and how to set up the equation
system from the input data (Popper, 2003).

The matrix of the equation system can be stored
in a file, element by element, in the following way:

row number column number value

Command reading data from a file into a list object
is,

MatrixInput = ReadList[“D:\Data\Matrix.dat”,
 {Number,Number,Number}];

This list object can be converted into a sparse array
object as,

Converter[{row_,column_,value_}]:=
 {row,column}→value

where value is the value of the matrix element as-
signed to the row-th row and column-th column.
Converting MatrixInput list into a sparse ar-
ray, we get

A=SparseArray[Map[Converter[#]&,MatrixInput]]
SparseArray[<8218>,{2068.1462}]

SparseArray with rules involving patterns uses
cylindrical algebraic decomposition to find con-
nected array components. Sparse arrays are stored

internally using compressed sparse row formats,
generalized for tensors of arbitrary rank.

The echo of this command shows us, that A is a
sparse matrix object with 2068 rows and 1462 col-
umns. The number of the nonzero elements are
8218. These can be computed as,

NumberOf NonzeroElements =
 Length[Select[Flatten[A], # ≠ 0 &]]
NumberOf AllElements =
 Apply[Times, Dimensions[A]]

Consequently the sparseness of the matrix is,

Sparseness = 1. - NumberOf NonzeroElements/
 NumberOf AllElements
which is: 0.997282.

The right hand side vector of the system can be
read similarly, from a different file,

RightHandSideVector =
 ReadList[“D:\Data\Rside.dat”,{Number}]//Flatten;

which is a list of 2068 elements.

3 Condition Number

Looking for a solution in sense of least squares, the
pseudo matrix is,

PseudoMatrix = Traspose[A].A;

its condition number based on p-norm, p = 2, is

MatrixConditionNumber[PseudoMatrix, 2]

which is 2107.78. This means that the PseudoMa-
trix matrix is not an ill conditioned matrix, there-
fore pseudoinverse solution can be employed.

4 Displaying the structure

Matrix structure can be graphically displayed via
the MatrixPlot functionality. The array is shown
as a grid of black and white cells, by default repre-
senting zero-valued cells as white, and non-zero
values as black.
MatrixPlot accept the usual range of options for
a graphics function. In addition, it takes the Max-
MatrixSize option, specifying a maximum dis-
play size to use for the array. By default, this is set
to 512. If the matrix dimensions are larger than this
size, the matrix is downsampled to this size or less
so that the output graphic size can be controlled. In
this case, a darkened cell indicates that at least one
of the covered cells has a non-central value. The

MaxMatrixSize may be set to Infnity to
prevent downsampling before display,

<< LinearAlgebra`MatrixManipulation`
MatrixPlot[A, MatrixSize→Infinity];

0 500 1000

2000

1500

1000

500

0
0 500 1000

2000

1500

1000

500

0

Fig. 1 The structure of the sparse matrix

5 LinearSolve solution

First we try the LinearSolve function works on
both numerical and symbolic matrices, as well as
SparseArray objects. For sparse arrays, Lin-
earSolve uses UMFPACK multifrontal direct
solver methods and with Method->"Krylov"
uses Krylov iterative methods preconditioned by an
incomplete LU factorization only for numeric ma-
trices.

Timing[(LinearSolve[PseudoMatrix,
 Transpose[A].RightHandSideVektor]);]
{0. Second, Null}

or with the Krylov method

Timing[(LinearSolve[PseudoMatrix,
 Transpose[A].RightHandSideVektor,
 Method→Krylov]);]
{0.031 Second, Null}

The solution vector

x=LinearSolve[PseudoMatrix,
 Transpose[A].RightHandSideVektor]);]
ListPlot[x, PlotJoined→True, Frame→True,
 PlotRange→{-3,+3}, FrameLabel→
 {“Number of variables”,”Value of variable”}];

0 200 400 600 800 1000 1200 1400
Number of variables

-2

-1

0

1

2

3

eulaV
fo

elbairav

Fig. 2 The structure of the solution

We can check the quality of the pseudo solution

Norm[PseudoMatrix.x-
Transpose[A].RightHandSideVektor]
1.12688×10-11

The residium of the solution is

Norm[A.x- RightHandSideVektor]
6.68605

The distribution of the residium among the equa-
tions

ListPlot[Map[Abs[#]&, (RightHandSideVektor-A.x],
 PlotJoined→True, PlotRange→All,
 Frame→True, FrameLabel→
 {“Number of equations”,”Value of
residium”}];

0 500 1000 1500 2000
Number of equations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

eulaV
fo

muidiser

Fig. 3 Distribution of the residuum

6 SVD Solution

The SingularValueDecomposition func-
tion gives the singular value decomposition for a
numerical matrix A. The result is a list of matrices
{u, σ, v}, where σ is a diagonal matrix, and A can
be written as u . σ. Conjugate [Trans-
pose[v]].
SingularValueDecomposition uses the

QR decomposition algorithm of Francis with
Given's rotations.

Timing[SingularValues[A];]
{42.781 Second, Null}

which is greater with two magnitude than running
time of LinearSolve.

{u,σ,v} = SingularValues[A];

The diagonal matrix is

Ξr = DiagonalMatrix[σ];

The p = 2 norm of a matrix is the largest principal
axis of the ellipsoid, equal to the largest singular
value of the matrix.

Norm[A] == Max[σ]
True

The spectral condition number gives a better esti-
mation for the ill-conditioning, than condition num-
ber based on p = 2 norm

σ[[1]]/Last[σ]
45.9466

The matrices of u and v are

{Ur, Vr} = Map[Transpose, {u, v}];

The matrix A can be expressed with these matrices
and with the diagonal matrix, consequently

Norm[A- Ur . Ξr .Transpose[Vr]]
1.98418×10-14

The inverse matrix is

A+ = Vr . Inverse[Ξr] .Transpose[Ur];

To check round of errors we can express A with the
inverse, too

Norm[A-A .A+.A]
1.80475×10-14

The solution vector is

xx = A+. RightHandSideVektor;

The difference between the first and second solution
method is

Norm[x-xx]
9.7108×10-11

7 Pseudoinverse solution

The third solution method computes the pseudoin-
verse of A directly, indeed

Norm[PseudoInverse[A] -A+]
2.11709×10-14

For numerical matrices, PseudoInverse is
based on SingularValueDecomposition,
therefore the time of this computation is very close
to that of the SVD method,

Timing[(PseudoInverse[A] . RightHandSideVektor);]
{43.563 Second, Null}

which is greater again with two magnitude than
running time of LinearSolve. The solution vec-
tor is

xxx = PseudoInverse[A] . RightHandSideVektor;

The total residium of the third solution is

Norm[A . xxx – RightHandSideVektor];
6.68605

Comparing the first and third solutions, the norm of
the difference of the solution vectors is

Norm[x – xxx]
9.71054×10-11

However, the execution time of SVD type methods
are significantly greater than that of the Linear-
Solve, one can use them in case of ill conditioned
problem, too.

8 Complexity Study

It is important to know, how the computation time
increases with the increase of n. According to our
computation carried out on PC Compaq Evo P4 2.8
MHz with Mathematica Version 5, the Table 1
shows the results of two characteristic runs where
the computation time is in seconds.

Table 1. Comparison of methods in case of different prob-
lem sizes

Matrix A Sparse-
ness

Linear
Solve

Pseudo
Inverse SVD

559×400 0.990 0.031 1.188 1.203
2068×1462 0.997 0.172 43.563 42.781

9 Interpolated deflections of vertical

Interpolated N-S (ξ) and E-W (η) components of
deflections of the vertical that resulted from the
computation visualized on isoline map in Figure 6
and 7. Isoline interval is 0.2”. The interpolation
network has 738 torsion balance stations (marking
by dots in figures) and 731 of these are points with
unknown deflection of the vertical. Since there are
two unknown components of deflection of the verti-
cal at each point there are 1462 unknowns for which
2068 equations can be written. From these 738
torsion balance stations there were 11 astrogeodetic
and astrogravimetric points where ξ , η values
were known referring to the GRS80 system. 7 as-
trogeodetic points were used as initial (fixed) points
of interpolation and 4 points were used for checking
of computations.

 Standard deviations 06.0 ′′±=ξm and
56.0 ′′±=ηm , computed at checkpoints confirm the

fact that ξ , η values of acceptable accuracy can be
computed from torsion balance measurements and
Mathematica can be efficiently applied for solving
this adjustment problem.

650000 660000 670000 680000 690000 700000 710000 720000

140000

150000

160000

170000

180000

190000

200000

210000

ξ

Fig. 6 Computed N-S (ξ) component of deflections of the
vertical

650000 660000 670000 680000 690000 700000 710000 720000

140000

150000

160000

170000

180000

190000

200000

210000

η

Fig. 7 Computed E-W (η) component of deflections of the
vertical

10 Conclusions

LinearSolve based on UMFPACK multifrontal
direct solver methods and with Method-
>"Krylov" uses Krylov iterative methods pre-
conditioned by an incomplete LU factorization as
well as the PseudoInverse uses SVD method,
give the same result, however the running time of
the latest is greater with about two magnitudes. In
case of bad conditioned pseudo matrix, Pseudo-
Inverse function is recommended. Using a stan-
dard PC like we did, we get solution under realistic
time (approx. 40 seconds) in case of a not bad con-
ditioned system matrix, for n = 1462 variables. It

goes without saying that these limits could be dou-
bled with PC employing 64 bits processors.

Acknowledgements

We should thank for the funding of the above inves-
tigations to the National Scientific Research Fund
(OTKA T-037929 and T-37880), and for the assis-
tance provided by the Physical Geodesy and Geo-
dynamic Research Group of the Hungarian Acad-
emy of Sciences.

References

Steinhaus, S. (2002) Comparison of mathematical programs

for data analysis available:
 http://www.scientificweb.de/ncrunch/

Popper, G. (2003) Numerical methods with Mathematica.
Müegyetemi Kiadó, Budapest. /in Hungarian/

Ruskeepaa, H. (2004) Matematica Navigator, Academic
Press, 2nd edition

Tóth Gy, Völgyesi L. (2002) Comparison of interpolation
and collocation techniques using torsion balance data.
Reports on Geodesy, Warsaw University of Technology,
Vol. 61, Nr.1, pp. 171-182.

Völgyesi L. (1993) Interpolation of Deflection of the Vertical
Based on Gravity Gradients. Periodica Polytechnica
Civ.Eng., Vo1. 37. Nr. 2, pp. 137-166.

Völgyesi L. (1995) Test Interpolation of Deflection of the
Vertical in Hungary Based on Gravity Gradients.
Periodica Polytechnica Civ.Eng., Vo1. 39, Nr. 1, pp. 37-
75.

Völgyesi L. (2001) Geodetic applications of torsion balance
measurements in Hungary. Reports on Geodesy, Warsaw
University of Technology, Vol. 57, Nr. 2, pp. 203-212.

* * *

Völgyesi L, Popper Gy, Paláncz B (2004): Application of adjustment via Mathematica for
deflection of the vertical determination. IAG International Symposium, Gravity, Geoid and
Space Missions. Porto, Portugal August 30 - September 3, 2004.

Dr. Lajos VÖLGYESI, Department of Geodesy and Surveying, Budapest University of Technology
and Economics, H-1521 Budapest, Hungary, Műegyetem rkp. 3.
Web: http://sci.fgt.bme.hu/volgyesi E-mail: volgyesi@eik.bme.hu

